These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
259 related items for PubMed ID: 27515418
21. Nutrient starvation and light deprivation effects on starch accumulation in Landoltia punctata cultivated on anaerobically digested dairy manure. Kruger K, Chen L, He BB. J Environ Qual; 2020 Jul; 49(4):1044-1053. PubMed ID: 33016485 [Abstract] [Full Text] [Related]
22. Growing duckweed in swine wastewater for nutrient recovery and biomass production. Xu J, Shen G. Bioresour Technol; 2011 Jan; 102(2):848-53. PubMed ID: 20869239 [Abstract] [Full Text] [Related]
23. [Effect of environment and nutrient factors on the content of nitrogen and phosphorus in two duckweeds species: Spirodela polyrrhiza and Lemna aequinoctialis]. Chong YX, Hu HY, Qian Y. Huan Jing Ke Xue; 2005 Sep; 26(5):67-71. PubMed ID: 16366472 [Abstract] [Full Text] [Related]
24. Natural variance in salt tolerance and induction of starch accumulation in duckweeds. Sree KS, Adelmann K, Garcia C, Lam E, Appenroth KJ. Planta; 2015 Jun; 241(6):1395-404. PubMed ID: 25693515 [Abstract] [Full Text] [Related]
25. Light-induced degradation of storage starch in turions of Spirodela polyrhiza depends on nitrate. Appenroth KJ, Ziegler P. Plant Cell Environ; 2008 Oct; 31(10):1460-9. PubMed ID: 18643949 [Abstract] [Full Text] [Related]
26. Cadmium removal by Lemna minor and Spirodela polyrhiza. Chaudhuri D, Majumder A, Misra AK, Bandyopadhyay K. Int J Phytoremediation; 2014 Oct; 16(7-12):1119-32. PubMed ID: 24933906 [Abstract] [Full Text] [Related]
27. Nutrient recovery from swine waste and protein biomass production using duckweed ponds (Landoltia punctata): southern Brazil. Mohedano RA, Velho VF, Costa RH, Hofmann SM, Belli Filho P. Water Sci Technol; 2012 Oct; 65(11):2042-8. PubMed ID: 22592476 [Abstract] [Full Text] [Related]
28. Arsenic uptake, accumulation and phytofiltration by duckweed (Spirodela polyrhiza L.). Zhang X, Hu Y, Liu Y, Chen B. J Environ Sci (China); 2011 Oct; 23(4):601-6. PubMed ID: 21793402 [Abstract] [Full Text] [Related]
29. High nutrient removal rate from swine wastes and protein biomass production by full-scale duckweed ponds. Mohedano RA, Costa RH, Tavares FA, Belli Filho P. Bioresour Technol; 2012 May; 112():98-104. PubMed ID: 22425517 [Abstract] [Full Text] [Related]
30. Enhanced biomass production and nutrient removal capacity of duckweed via two-step cultivation process with a plant growth-promoting bacterium, Acinetobacter calcoaceticus P23. Ishizawa H, Ogata Y, Hachiya Y, Tokura KI, Kuroda M, Inoue D, Toyama T, Tanaka Y, Mori K, Morikawa M, Ike M. Chemosphere; 2020 Jan; 238():124682. PubMed ID: 31524619 [Abstract] [Full Text] [Related]
31. Joint effects of naphthalene and microcystin-LR on physiological responses and toxin bioaccumulation of Landoltia punctata. Yang GL, Huang MJ, Tan AJ, Lv SM. Aquat Toxicol; 2021 Feb; 231():105710. PubMed ID: 33338701 [Abstract] [Full Text] [Related]
32. Unravelling the impact of light, temperature and nutrient dynamics on duckweed growth: A meta-analysis study. Pasos-Panqueva J, Baker A, Camargo-Valero MA. J Environ Manage; 2024 Aug; 366():121721. PubMed ID: 39018836 [Abstract] [Full Text] [Related]
33. Duckweed Is a Promising Feedstock of Biofuels: Advantages and Approaches. Yang GL. Int J Mol Sci; 2022 Dec 03; 23(23):. PubMed ID: 36499555 [Abstract] [Full Text] [Related]
34. The biological responses and metal phytoaccumulation of duckweed Spirodela polyrhiza to manganese and chromium. Liu Y, Sanguanphun T, Yuan W, Cheng JJ, Meetam M. Environ Sci Pollut Res Int; 2017 Aug 03; 24(23):19104-19113. PubMed ID: 28660513 [Abstract] [Full Text] [Related]
35. Genetic structure of duckweed population of Spirodela, Landoltia and Lemna from Lake Tai, China. Tang J, Zhang F, Cui W, Ma J. Planta; 2014 Jun 03; 239(6):1299-307. PubMed ID: 24663442 [Abstract] [Full Text] [Related]
36. Enhanced biomass production and pollutant removal by duckweed in mixotrophic conditions. Sun Z, Guo W, Yang J, Zhao X, Chen Y, Yao L, Hou H. Bioresour Technol; 2020 Dec 03; 317():124029. PubMed ID: 32916457 [Abstract] [Full Text] [Related]
37. The logistic growth of duckweed (Lemna minor) and kinetics of ammonium uptake. Zhang K, Chen YP, Zhang TT, Zhao Y, Shen Y, Huang L, Gao X, Guo JS. Environ Technol; 2014 Dec 03; 35(5-8):562-7. PubMed ID: 24645435 [Abstract] [Full Text] [Related]
38. Growth Promotion of Giant Duckweed Spirodela polyrhiza (Lemnaceae) by Ensifer sp. SP4 Through Enhancement of Nitrogen Metabolism and Photosynthesis. Toyama T, Mori K, Tanaka Y, Ike M, Morikawa M. Mol Plant Microbe Interact; 2022 Jan 03; 35(1):28-38. PubMed ID: 34622686 [Abstract] [Full Text] [Related]
39. Enhanced biomass production of duckweeds by inoculating a plant growth-promoting bacterium, Acinetobacter calcoaceticus P23, in sterile medium and non-sterile environmental waters. Toyama T, Kuroda M, Ogata Y, Hachiya Y, Quach A, Tokura K, Tanaka Y, Mori K, Morikawa M, Ike M. Water Sci Technol; 2017 Sep 03; 76(5-6):1418-1428. PubMed ID: 28953468 [Abstract] [Full Text] [Related]
40. Growing Lemna minor in agricultural wastewater and converting the duckweed biomass to ethanol. Ge X, Zhang N, Phillips GC, Xu J. Bioresour Technol; 2012 Nov 03; 124():485-8. PubMed ID: 22985823 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]