These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


110 related items for PubMed ID: 2752029

  • 1. 400 MHz two-dimensional nuclear Overhauser spectroscopy on anesthetic interaction with lipid bilayer.
    Yokono S, Ogli K, Miura S, Ueda I.
    Biochim Biophys Acta; 1989 Jul 10; 982(2):300-2. PubMed ID: 2752029
    [Abstract] [Full Text] [Related]

  • 2. Interfacial preference of anesthetic action upon the phase transition of phospholipid bilayers and partition equilibrium of inhalation anesthetics between membrane and deuterium oxide.
    Yokono S, Shieh DD, Ueda I.
    Biochim Biophys Acta; 1981 Jul 20; 645(2):237-42. PubMed ID: 6268156
    [Abstract] [Full Text] [Related]

  • 3. Local anesthetics destabilize lipid membranes by breaking hydration shell: infrared and calorimetry studies.
    Ueda I, Chiou JS, Krishna PR, Kamaya H.
    Biochim Biophys Acta; 1994 Mar 23; 1190(2):421-9. PubMed ID: 8142445
    [Abstract] [Full Text] [Related]

  • 4. Molecular orientation of volatile anesthetics at the binding surface: 1H- and 19F-NMR studies of submolecular affinity.
    Yoshida T, Takahashi K, Ueda I.
    Biochim Biophys Acta; 1989 Nov 03; 985(3):331-3. PubMed ID: 2804113
    [Abstract] [Full Text] [Related]

  • 5. Interaction modes of long-chain fatty acids in dipalmitoylphosphatidylcholine bilayer membrane: contrast to mode of inhalation anesthetics.
    Nishimoto M, Hata T, Goto M, Tamai N, Kaneshina S, Matsuki H, Ueda I.
    Chem Phys Lipids; 2009 Apr 03; 158(2):71-80. PubMed ID: 19428351
    [Abstract] [Full Text] [Related]

  • 6. Membrane structural perturbations caused by anesthetics and nonimmobilizers: a molecular dynamics investigation.
    Koubi L, Tarek M, Bandyopadhyay S, Klein ML, Scharf D.
    Biophys J; 2001 Dec 03; 81(6):3339-45. PubMed ID: 11720997
    [Abstract] [Full Text] [Related]

  • 7. Molecular dynamics simulation study of the effect of halothane on mixed DPPC/DPPE phospholipid membranes.
    Arvayo-Zatarain JA, Favela-Rosales F, Contreras-Aburto C, Urrutia-Bañuelos E, Maldonado A.
    J Mol Model; 2018 Dec 15; 25(1):4. PubMed ID: 30554281
    [Abstract] [Full Text] [Related]

  • 8. Nuclear magnetic resonance studies of lipid hydration in monomethyldioleoylphosphatidylethanolamine dispersions.
    Chen ZJ, Van Gorkom LC, Epand RM, Stark RE.
    Biophys J; 1996 Mar 15; 70(3):1412-8. PubMed ID: 8785297
    [Abstract] [Full Text] [Related]

  • 9. Amphiphilic binding site of ethanol in reversed lipid micelles.
    Klemm WR, Williams HJ.
    Alcohol; 1996 Mar 15; 13(2):133-8. PubMed ID: 8814646
    [Abstract] [Full Text] [Related]

  • 10. Infrared spectra of phospholipid membranes: interfacial dehydration by volatile anesthetics and phase transition.
    Tsai YS, Ma SM, Nishimura S, Ueda I.
    Biochim Biophys Acta; 1990 Feb 28; 1022(2):245-50. PubMed ID: 2306457
    [Abstract] [Full Text] [Related]

  • 11. Nuclear magnetic resonance studies of the interaction of general anesthetics with 1,2-dihexadecyl-sn-glycero-3-phosphorylcholine bilayer.
    Shieh DD, Ueda I, Lin H, Eyring H.
    Proc Natl Acad Sci U S A; 1976 Nov 28; 73(11):3999-4002. PubMed ID: 1069285
    [Abstract] [Full Text] [Related]

  • 12. Locations and dynamical perturbations for lipids of cationic forms of procaine, tetracaine, and dibucaine in small unilamellar phosphatidylcholine vesicles as studied by nuclear Overhauser effects in 1H nuclear magnetic resonance spectroscopy.
    Kuroda Y, Fujiwara Y.
    Biochim Biophys Acta; 1987 Oct 16; 903(3):395-410. PubMed ID: 3663653
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. A DSC and FTIR spectroscopic study of the effects of the epimeric 4-cholesten-3-ols and 4-cholesten-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: comparison with their 5-cholesten analogues.
    Benesch MG, Mannock DA, Lewis RN, McElhaney RN.
    Chem Phys Lipids; 2014 Jan 16; 177():71-90. PubMed ID: 24296232
    [Abstract] [Full Text] [Related]

  • 15. AFM study of interaction forces in supported planar DPPC bilayers in the presence of general anesthetic halothane.
    Leonenko Z, Finot E, Cramb D.
    Biochim Biophys Acta; 2006 Apr 16; 1758(4):487-92. PubMed ID: 16626631
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Comparisons of lipid dynamics and packing in fully interdigitated monoarachidoylphosphatidylcholine and non-interdigitated dipalmitoylphosphatidylcholine bilayers: cross polarization/magic angle spinning 13C-NMR studies.
    Wu WG, Chi LM.
    Biochim Biophys Acta; 1990 Jul 24; 1026(2):225-35. PubMed ID: 2116171
    [Abstract] [Full Text] [Related]

  • 18. Structure in the polar head region of phospholipid bilayers: A 31P [1H] nuclear Overhauser effect study.
    Yeagle PL, Hutton WC, Huang CH, Martin RB.
    Biochemistry; 1976 May 18; 15(10):2121-4. PubMed ID: 1276127
    [Abstract] [Full Text] [Related]

  • 19. Interaction of pulmonary surfactant protein SP-A with DPPC/egg-PG bilayers.
    Morrow MR, Abu-Libdeh N, Stewart J, Keough KM.
    Biophys J; 2003 Oct 18; 85(4):2397-405. PubMed ID: 14507703
    [Abstract] [Full Text] [Related]

  • 20. Studies on the interaction of anesthetic steroids with phosphatidylcholine using 2H and 13C solid state NMR.
    Makriyannis A, Siminovitch DJ, Das Gupta SK, Griffin RG.
    Biochim Biophys Acta; 1986 Jul 10; 859(1):49-55. PubMed ID: 3755060
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.