These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


84 related items for PubMed ID: 2753141

  • 1. Organization of the thyroid hormone receptor in the chromatin of C6 glial cells: evidence that changes in receptor levels are not associated with changes in receptor distribution.
    Ortiz-Caro J, Yusta B, Pascual A, Aranda A.
    FEBS Lett; 1989 Jul 03; 250(2):419-24. PubMed ID: 2753141
    [Abstract] [Full Text] [Related]

  • 2. Identification and characterization of L-triiodothyronine receptors in cells of glial and neuronal origin.
    Ortiz-Caro J, Yusta B, Montiel F, Villa A, Aranda A, Pascual A.
    Endocrinology; 1986 Nov 03; 119(5):2163-7. PubMed ID: 3769867
    [Abstract] [Full Text] [Related]

  • 3. Association of thyroid hormone receptors with chromatin.
    Jump DB, Oppenheimer JH.
    Mol Cell Biochem; 1983 Nov 03; 55(2):159-76. PubMed ID: 6314118
    [Abstract] [Full Text] [Related]

  • 4. Modulation of thyroid hormone nuclear receptors by short-chain fatty acids in glial C6 cells. Role of histone acetylation.
    Ortiz-Caro J, Montiel F, Pascual A, Aranda A.
    J Biol Chem; 1986 Oct 25; 261(30):13997-4004. PubMed ID: 3771518
    [Abstract] [Full Text] [Related]

  • 5. Association of the thyroid hormone receptor with rat liver chromatin.
    Jump DB, Seelig S, Schwartz HL, Oppenheimer JH.
    Biochemistry; 1981 Nov 24; 20(24):6781-9. PubMed ID: 6274379
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Thyroid hormone nuclear receptor levels are influenced by the acetylation of chromatin-associated proteins.
    Samuels HH, Stanley F, Casanova J, Shao TC.
    J Biol Chem; 1980 Mar 25; 255(6):2499-508. PubMed ID: 6244282
    [Abstract] [Full Text] [Related]

  • 8. Thyroid hormone receptor-containing fragment released from chromatin by deoxyribonuclease I and micrococcal nuclease.
    Jump DB, Oppenheimer JH.
    Science; 1980 Aug 15; 209(4458):811-3. PubMed ID: 6250215
    [Abstract] [Full Text] [Related]

  • 9. Differences in the association of the progesterone receptor ligated by antiprogestin RU38486 or progestin ORG 2058 to chromatin components.
    Geier A, Bella R, Beery R, Haimsohn M, Lunenfeld B.
    Biochim Biophys Acta; 1987 Oct 22; 931(1):78-86. PubMed ID: 3651513
    [Abstract] [Full Text] [Related]

  • 10. Characterization of the progesterone receptor solubilized by micrococcal nuclease and DNase I digestion.
    Geier A, Yemini-Blauer Z, Lunenfeld B, Nebel L.
    J Steroid Biochem; 1986 Aug 22; 25(2):271-6. PubMed ID: 3747526
    [Abstract] [Full Text] [Related]

  • 11. Selective association of the trout-specific H6 protein with chromatin regions susceptible to DNase I and DNase II: possible location of HMG-T in the spacer region between core nucleosomes.
    Levy W B, Wong NC, Dixon GH.
    Proc Natl Acad Sci U S A; 1977 Jul 22; 74(7):2810-4. PubMed ID: 268631
    [Abstract] [Full Text] [Related]

  • 12. The size of the thyroid hormone receptor in chromatin.
    Gruol DJ, Kempner ES.
    J Biol Chem; 1982 Jan 25; 257(2):708-13. PubMed ID: 6274860
    [Abstract] [Full Text] [Related]

  • 13. Short chain fatty acids modulate nuclear receptor and extranuclear L-triiodothyronine levels in glial C6 cells by different mechanisms.
    Ortiz-Caro J, Montiel F, Yusta B, Pascual A, Aranda A.
    Endocrinology; 1988 Jun 25; 122(6):2597-603. PubMed ID: 2836168
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Zinc(II) inhibits the release of thyroid and glucocorticoid receptors from chromatin of cultured GC cells.
    Ramirez IJ, Halwer M, Shapiro LE, Surks MI.
    Horm Metab Res; 1991 Apr 25; 23(4):155-61. PubMed ID: 1908429
    [Abstract] [Full Text] [Related]

  • 16. The appearance, distribution, and longevity of receptor-[125I]T3 complexes within the nuclei of isolated rat hepatocytes.
    Pullen GL, Barsano CP, Peffley DM, Singh KR.
    Thyroid; 1994 Apr 25; 4(3):305-12. PubMed ID: 7833668
    [Abstract] [Full Text] [Related]

  • 17. Regulation of thyroid hormone receptors and responses by thyrotropin-releasing hormone in GH4C1 cells.
    Kaji H, Hinkle PM.
    Endocrinology; 1987 Nov 25; 121(5):1697-704. PubMed ID: 3117521
    [Abstract] [Full Text] [Related]

  • 18. Effects of thyrotropin on the phosphorylation of histones and nonhistone phosphoproteins in micrococcal nuclease-sensitive and resistant thyroid chromatin.
    Cooper E, Spaulding SW.
    Endocrinology; 1983 May 25; 112(5):1816-22. PubMed ID: 6219868
    [Abstract] [Full Text] [Related]

  • 19. In vitro 3,5,3'-triiodothyronine binding to rat cerebrocortical neuronal and glial nuclei suggests the presence of binding sites unavailable in vivo.
    Kolodny JM, Larsen PR, Silva JE.
    Endocrinology; 1985 May 25; 116(5):2019-28. PubMed ID: 2985367
    [Abstract] [Full Text] [Related]

  • 20. Differences in pattern of release of triiodothyronine (T3) and tetraiodothyronine (T4) associated receptors from chromatin by micrococcal nuclease.
    Yiannakouris N, Valcana T.
    Horm Metab Res; 1998 Jan 25; 30(1):7-11. PubMed ID: 9503032
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.