These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
352 related items for PubMed ID: 27531961
1. Unraveling the essential role of CysK in CDI toxin activation. Johnson PM, Beck CM, Morse RP, Garza-Sánchez F, Low DA, Hayes CS, Goulding CW. Proc Natl Acad Sci U S A; 2016 Aug 30; 113(35):9792-7. PubMed ID: 27531961 [Abstract] [Full Text] [Related]
2. Activation of an anti-bacterial toxin by the biosynthetic enzyme CysK: mechanism of binding, interaction specificity and competition with cysteine synthase. Benoni R, Beck CM, Garza-Sánchez F, Bettati S, Mozzarelli A, Hayes CS, Campanini B. Sci Rep; 2017 Aug 18; 7(1):8817. PubMed ID: 28821763 [Abstract] [Full Text] [Related]
3. Dual Role of a Biosynthetic Enzyme, CysK, in Contact Dependent Growth Inhibition in Bacteria. Kaundal S, Uttam M, Thakur KG. PLoS One; 2016 Aug 18; 11(7):e0159844. PubMed ID: 27458806 [Abstract] [Full Text] [Related]
4. Identification of a target cell permissive factor required for contact-dependent growth inhibition (CDI). Diner EJ, Beck CM, Webb JS, Low DA, Hayes CS. Genes Dev; 2012 Mar 01; 26(5):515-25. PubMed ID: 22333533 [Abstract] [Full Text] [Related]
5. The structure of a contact-dependent growth-inhibition (CDI) immunity protein from Neisseria meningitidis MC58. Tan K, Johnson PM, Stols L, Boubion B, Eschenfeldt W, Babnigg G, Hayes CS, Joachimiak A, Goulding CW. Acta Crystallogr F Struct Biol Commun; 2015 Jun 01; 71(Pt 6):702-9. PubMed ID: 26057799 [Abstract] [Full Text] [Related]
6. Contact-dependent growth inhibition toxins exploit multiple independent cell-entry pathways. Willett JL, Gucinski GC, Fatherree JP, Low DA, Hayes CS. Proc Natl Acad Sci U S A; 2015 Sep 08; 112(36):11341-6. PubMed ID: 26305955 [Abstract] [Full Text] [Related]
7. Diversification of β-Augmentation Interactions between CDI Toxin/Immunity Proteins. Morse RP, Willett JL, Johnson PM, Zheng J, Credali A, Iniguez A, Nowick JS, Hayes CS, Goulding CW. J Mol Biol; 2015 Nov 20; 427(23):3766-84. PubMed ID: 26449640 [Abstract] [Full Text] [Related]
8. A widespread family of polymorphic contact-dependent toxin delivery systems in bacteria. Aoki SK, Diner EJ, de Roodenbeke CT, Burgess BR, Poole SJ, Braaten BA, Jones AM, Webb JS, Hayes CS, Cotter PA, Low DA. Nature; 2010 Nov 18; 468(7322):439-42. PubMed ID: 21085179 [Abstract] [Full Text] [Related]
9. Activation of contact-dependent antibacterial tRNase toxins by translation elongation factors. Jones AM, Garza-Sánchez F, So J, Hayes CS, Low DA. Proc Natl Acad Sci U S A; 2017 Mar 07; 114(10):E1951-E1957. PubMed ID: 28223500 [Abstract] [Full Text] [Related]
10. Functional Diversity of Cytotoxic tRNase/Immunity Protein Complexes from Burkholderia pseudomallei. Johnson PM, Gucinski GC, Garza-Sánchez F, Wong T, Hung LW, Hayes CS, Goulding CW. J Biol Chem; 2016 Sep 09; 291(37):19387-400. PubMed ID: 27445337 [Abstract] [Full Text] [Related]
11. Convergent Evolution of the Barnase/EndoU/Colicin/RelE (BECR) Fold in Antibacterial tRNase Toxins. Gucinski GC, Michalska K, Garza-Sánchez F, Eschenfeldt WH, Stols L, Nguyen JY, Goulding CW, Joachimiak A, Hayes CS. Structure; 2019 Nov 05; 27(11):1660-1674.e5. PubMed ID: 31515004 [Abstract] [Full Text] [Related]
12. Identification of functional toxin/immunity genes linked to contact-dependent growth inhibition (CDI) and rearrangement hotspot (Rhs) systems. Poole SJ, Diner EJ, Aoki SK, Braaten BA, t'Kint de Roodenbeke C, Low DA, Hayes CS. PLoS Genet; 2011 Aug 05; 7(8):e1002217. PubMed ID: 21829394 [Abstract] [Full Text] [Related]
13. Mechanism of activation of contact-dependent growth inhibition tRNase toxin by the amino acid biogenesis factor CysK in the bacterial competition system. Feng Z, Yashiro Y, Tomita K. Nucleic Acids Res; 2024 Sep 04. PubMed ID: 39228374 [Abstract] [Full Text] [Related]
14. Mechanisms and biological roles of contact-dependent growth inhibition systems. Hayes CS, Koskiniemi S, Ruhe ZC, Poole SJ, Low DA. Cold Spring Harb Perspect Med; 2014 Feb 01; 4(2):. PubMed ID: 24492845 [Abstract] [Full Text] [Related]
15. The Cytoplasm-Entry Domain of Antibacterial CdiA Is a Dynamic α-Helical Bundle with Disulfide-Dependent Structural Features. Bartelli NL, Sun S, Gucinski GC, Zhou H, Song K, Hayes CS, Dahlquist FW. J Mol Biol; 2019 Aug 09; 431(17):3203-3216. PubMed ID: 31181288 [Abstract] [Full Text] [Related]
16. Lipidation of Class IV CdiA Effector Proteins Promotes Target Cell Recognition during Contact-Dependent Growth Inhibition. Halvorsen TM, Garza-Sánchez F, Ruhe ZC, Bartelli NL, Chan NA, Nguyen JY, Low DA, Hayes CS. mBio; 2021 Oct 26; 12(5):e0253021. PubMed ID: 34634941 [Abstract] [Full Text] [Related]
17. CdiA Effectors from Uropathogenic Escherichia coli Use Heterotrimeric Osmoporins as Receptors to Recognize Target Bacteria. Beck CM, Willett JL, Cunningham DA, Kim JJ, Low DA, Hayes CS. PLoS Pathog; 2016 Oct 26; 12(10):e1005925. PubMed ID: 27723824 [Abstract] [Full Text] [Related]
18. CdiA from Enterobacter cloacae delivers a toxic ribosomal RNase into target bacteria. Beck CM, Morse RP, Cunningham DA, Iniguez A, Low DA, Goulding CW, Hayes CS. Structure; 2014 May 06; 22(5):707-18. PubMed ID: 24657090 [Abstract] [Full Text] [Related]
19. The CDI toxin of Yersinia kristensenii is a novel bacterial member of the RNase A superfamily. Batot G, Michalska K, Ekberg G, Irimpan EM, Joachimiak G, Jedrzejczak R, Babnigg G, Hayes CS, Joachimiak A, Goulding CW. Nucleic Acids Res; 2017 May 19; 45(9):5013-5025. PubMed ID: 28398546 [Abstract] [Full Text] [Related]
20. Contact-Dependent Growth Inhibition (CDI) and CdiB/CdiA Two-Partner Secretion Proteins. Willett JL, Ruhe ZC, Goulding CW, Low DA, Hayes CS. J Mol Biol; 2015 Nov 20; 427(23):3754-65. PubMed ID: 26388411 [Abstract] [Full Text] [Related] Page: [Next] [New Search]