These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
307 related items for PubMed ID: 27532244
21. Towards an understanding of semaphorin signalling in the spinal cord. O'Malley AM, Shanley DK, Kelly AT, Barry DS. Gene; 2014 Dec 15; 553(2):69-74. PubMed ID: 25300255 [Abstract] [Full Text] [Related]
22. Leaving the midline: how Robo receptors regulate the guidance of post-crossing spinal commissural axons. Reeber SL, Kaprielian Z. Cell Adh Migr; 2009 Dec 15; 3(3):300-4. PubMed ID: 19556886 [Abstract] [Full Text] [Related]
23. The Nogo-66 Receptors NgR1 and NgR3 Are Required for Commissural Axon Pathfinding. Vaccaro G, Dumoulin A, Zuñiga NR, Bandtlow CE, Stoeckli ET. J Neurosci; 2022 May 18; 42(20):4087-4100. PubMed ID: 35437280 [Abstract] [Full Text] [Related]
24. Localization of an axon growth inhibitory molecule Nogo and its receptor in the spinal cord of mouse embryos. Wang J, Wang L, Zhao H, Chan SO. Brain Res; 2010 Jan 08; 1306():8-17. PubMed ID: 19833111 [Abstract] [Full Text] [Related]
25. Real time large scale in vivo observations reveal intrinsic synchrony, plasticity and growth cone dynamics of midline crossing axons at the ventral floor plate of the zebrafish spinal cord. Andersen SSL. J Integr Neurosci; 2019 Dec 30; 18(4):351-368. PubMed ID: 31912693 [Abstract] [Full Text] [Related]
26. Midline axon guidance and human genetic disorders. Izzi L, Charron F. Clin Genet; 2011 Sep 30; 80(3):226-34. PubMed ID: 21692777 [Abstract] [Full Text] [Related]
27. Ipsi- and contralateral commissural growth cones react differently to the cellular environment of the ventral zebrafish spinal cord. Bernhardt RR. J Comp Neurol; 1994 Dec 01; 350(1):122-32. PubMed ID: 7860796 [Abstract] [Full Text] [Related]
28. Ndfip Proteins Target Robo Receptors for Degradation and Allow Commissural Axons to Cross the Midline in the Developing Spinal Cord. Gorla M, Santiago C, Chaudhari K, Layman AAK, Oliver PM, Bashaw GJ. Cell Rep; 2019 Mar 19; 26(12):3298-3312.e4. PubMed ID: 30893602 [Abstract] [Full Text] [Related]
29. Mis-expression of L1 on pre-crossing spinal commissural axons disrupts pathfinding at the ventral midline. Imondi R, Jevince AR, Helms AW, Johnson JE, Kaprielian Z. Mol Cell Neurosci; 2007 Dec 19; 36(4):462-71. PubMed ID: 17884558 [Abstract] [Full Text] [Related]
30. Semaphorin-Plexin signaling influences early ventral telencephalic development and thalamocortical axon guidance. Mitsogiannis MD, Little GE, Mitchell KJ. Neural Dev; 2017 Apr 24; 12(1):6. PubMed ID: 28438183 [Abstract] [Full Text] [Related]
31. Molecular mechanisms regulating axon responsiveness at the midline. Gorla M, Bashaw GJ. Dev Biol; 2020 Oct 01; 466(1-2):12-21. PubMed ID: 32818516 [Abstract] [Full Text] [Related]
32. Diversity of contralateral commissural projections in the embryonic rodent spinal cord. Kadison SR, Kaprielian Z. J Comp Neurol; 2004 May 10; 472(4):411-22. PubMed ID: 15065116 [Abstract] [Full Text] [Related]
33. Midline crossing is not required for subsequent pathfinding decisions in commissural neurons. Bonner J, Letko M, Nikolaus OB, Krug L, Cooper A, Chadwick B, Conklin P, Lim A, Chien CB, Dorsky RI. Neural Dev; 2012 Jun 06; 7():18. PubMed ID: 22672767 [Abstract] [Full Text] [Related]
34. Expression of major guidance receptors is differentially regulated in spinal commissural neurons transfated by mammalian Barh genes. Kawauchi D, Muroyama Y, Sato T, Saito T. Dev Biol; 2010 Aug 15; 344(2):1026-34. PubMed ID: 20599893 [Abstract] [Full Text] [Related]
35. Squeezing axons out of the gray matter: a role for slit and semaphorin proteins from midline and ventral spinal cord. Zou Y, Stoeckli E, Chen H, Tessier-Lavigne M. Cell; 2000 Aug 04; 102(3):363-75. PubMed ID: 10975526 [Abstract] [Full Text] [Related]
36. Syk kinases are required for spinal commissural axon repulsion at the midline via the ephrin/Eph pathway. Noraz N, Jaaoini I, Charoy C, Watrin C, Chounlamountri N, Benon A, Malleval C, Boudin H, Honnorat J, Castellani V, Pellier-Monnin V. Development; 2016 Jun 15; 143(12):2183-93. PubMed ID: 27122172 [Abstract] [Full Text] [Related]
37. The spinal cord shows the way - How axons navigate intermediate targets. de Ramon Francàs G, Zuñiga NR, Stoeckli ET. Dev Biol; 2017 Dec 01; 432(1):43-52. PubMed ID: 27965053 [Abstract] [Full Text] [Related]
38. Crucial roles of Robo proteins in midline crossing of cerebellofugal axons and lack of their up-regulation after midline crossing. Tamada A, Kumada T, Zhu Y, Matsumoto T, Hatanaka Y, Muguruma K, Chen Z, Tanabe Y, Torigoe M, Yamauchi K, Oyama H, Nishida K, Murakami F. Neural Dev; 2008 Nov 05; 3():29. PubMed ID: 18986510 [Abstract] [Full Text] [Related]
39. Semaphorin 5B is a repellent cue for sensory afferents projecting into the developing spinal cord. Liu RQ, Wang W, Legg A, Abramyan J, O'Connor TP. Development; 2014 May 05; 141(9):1940-9. PubMed ID: 24718987 [Abstract] [Full Text] [Related]
40. Vertebrate spinal commissural neurons: a model system for studying axon guidance beyond the midline. Martinez E, Tran TS. Wiley Interdiscip Rev Dev Biol; 2015 May 05; 4(3):283-97. PubMed ID: 25619385 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]