These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
520 related items for PubMed ID: 27542565
1. Thermal plasticity in Drosophila melanogaster populations from eastern Australia: quantitative traits to transcripts. Clemson AS, Sgrò CM, Telonis-Scott M. J Evol Biol; 2016 Dec; 29(12):2447-2463. PubMed ID: 27542565 [Abstract] [Full Text] [Related]
3. The quantitative genetic basis of clinal divergence in phenotypic plasticity. van Heerwaarden B, Sgrò CM. Evolution; 2017 Nov; 71(11):2618-2633. PubMed ID: 28857153 [Abstract] [Full Text] [Related]
4. Variation in thermal performance and reaction norms among populations of Drosophila melanogaster. Klepsatel P, Gáliková M, De Maio N, Huber CD, Schlötterer C, Flatt T. Evolution; 2013 Dec; 67(12):3573-87. PubMed ID: 24299409 [Abstract] [Full Text] [Related]
5. Comparative analysis of morphological traits among Drosophila melanogaster and D. simulans: genetic variability, clines and phenotypic plasticity. Gibert P, Capy P, Imasheva A, Moreteau B, Morin JP, Pétavy G, David JR. Genetica; 2004 Mar; 120(1-3):165-79. PubMed ID: 15088656 [Abstract] [Full Text] [Related]
6. No patterns in thermal plasticity along a latitudinal gradient in Drosophila simulans from eastern Australia. van Heerwaarden B, Lee RF, Overgaard J, Sgrò CM. J Evol Biol; 2014 Nov; 27(11):2541-53. PubMed ID: 25262984 [Abstract] [Full Text] [Related]
7. Plasticity versus environmental canalization: population differences in thermal responses along a latitudinal gradient in Drosophila serrata. Liefting M, Hoffmann AA, Ellers J. Evolution; 2009 Aug; 63(8):1954-63. PubMed ID: 19473402 [Abstract] [Full Text] [Related]
8. Sensitivity to thermal extremes in Australian Drosophila implies similar impacts of climate change on the distribution of widespread and tropical species. Overgaard J, Kearney MR, Hoffmann AA. Glob Chang Biol; 2014 Jun; 20(6):1738-50. PubMed ID: 24549716 [Abstract] [Full Text] [Related]
9. Keeping your options open: Maintenance of thermal plasticity during adaptation to a stable environment. Fragata I, Lopes-Cunha M, Bárbaro M, Kellen B, Lima M, Faria GS, Seabra SG, Santos M, Simões P, Matos M. Evolution; 2016 Jan; 70(1):195-206. PubMed ID: 26626438 [Abstract] [Full Text] [Related]
10. Evolution and plasticity of thermal performance: an analysis of variation in thermal tolerance and fitness in 22 Drosophila species. MacLean HJ, Sørensen JG, Kristensen TN, Loeschcke V, Beedholm K, Kellermann V, Overgaard J. Philos Trans R Soc Lond B Biol Sci; 2019 Aug 05; 374(1778):20180548. PubMed ID: 31203763 [Abstract] [Full Text] [Related]
11. Candidate genes and thermal phenotypes: identifying ecologically important genetic variation for thermotolerance in the Australian Drosophila melanogaster cline. Rako L, Blacket MJ, McKechnie SW, Hoffmann AA. Mol Ecol; 2007 Jul 05; 16(14):2948-57. PubMed ID: 17614909 [Abstract] [Full Text] [Related]
12. Climatic selection on genes and traits after a 100 year-old invasion: a critical look at the temperate-tropical clines in Drosophila melanogaster from eastern Australia. Hoffmann AA, Weeks AR. Genetica; 2007 Feb 05; 129(2):133-47. PubMed ID: 16955331 [Abstract] [Full Text] [Related]
13. Whole-genome expression plasticity across tropical and temperate Drosophila melanogaster populations from Eastern Australia. Levine MT, Eckert ML, Begun DJ. Mol Biol Evol; 2011 Jan 05; 28(1):249-56. PubMed ID: 20671040 [Abstract] [Full Text] [Related]
14. Latitudinal clines in heat tolerance, protein synthesis rate and transcript level of a candidate gene in Drosophila melanogaster. Cockerell FE, Sgrò CM, McKechnie SW. J Insect Physiol; 2014 Jan 05; 60():136-44. PubMed ID: 24333150 [Abstract] [Full Text] [Related]
15. Comparing thermal performance curves across traits: how consistent are they? Kellermann V, Chown SL, Schou MF, Aitkenhead I, Janion-Scheepers C, Clemson A, Scott MT, Sgrò CM. J Exp Biol; 2019 Jun 05; 222(Pt 11):. PubMed ID: 31085593 [Abstract] [Full Text] [Related]
16. Potential for adaptation to climate change: family-level variation in fitness-related traits and their responses to heat waves in a snail population. Leicht K, Seppälä K, Seppälä O. BMC Evol Biol; 2017 Jun 15; 17(1):140. PubMed ID: 28619023 [Abstract] [Full Text] [Related]
17. Developmental thermal plasticity among Drosophila melanogaster populations. Fallis LC, Fanara JJ, Morgan TJ. J Evol Biol; 2014 Mar 15; 27(3):557-64. PubMed ID: 26230171 [Abstract] [Full Text] [Related]
18. How important is thermal history? Evidence for lasting effects of developmental temperature on upper thermal limits in Drosophila melanogaster. Kellermann V, van Heerwaarden B, Sgrò CM. Proc Biol Sci; 2017 May 31; 284(1855):. PubMed ID: 28539515 [Abstract] [Full Text] [Related]
19. Within-population plastic responses to combined thermal-nutritional stress differ from those in response to single stressors, and are genetically independent across traits in both males and females. Choy YMM, Walter GM, Mirth CK, Sgrò CM. J Evol Biol; 2024 Jun 28; 37(6):717-731. PubMed ID: 38757509 [Abstract] [Full Text] [Related]
20. Reproductive fitness of Drosophila is maximised by optimal developmental temperature. Klepsatel P, Girish TN, Dircksen H, Gáliková M. J Exp Biol; 2019 May 20; 222(Pt 10):. PubMed ID: 31064855 [Abstract] [Full Text] [Related] Page: [Next] [New Search]