These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
524 related items for PubMed ID: 27542932
1. Simultaneous Transformation of Commingled Trichloroethylene, Tetrachloroethylene, and 1,4-Dioxane by a Microbially Driven Fenton Reaction in Batch Liquid Cultures. Sekar R, Taillefert M, DiChristina TJ. Appl Environ Microbiol; 2016 Nov 01; 82(21):6335-6343. PubMed ID: 27542932 [Abstract] [Full Text] [Related]
2. Microbially driven Fenton reaction for degradation of the widespread environmental contaminant 1,4-dioxane. Sekar R, DiChristina TJ. Environ Sci Technol; 2014 Nov 04; 48(21):12858-67. PubMed ID: 25313646 [Abstract] [Full Text] [Related]
3. Degradation of the recalcitrant oil spill components anthracene and pyrene by a microbially driven Fenton reaction. Sekar R, DiChristina TJ. FEMS Microbiol Lett; 2017 Nov 15; 364(21):. PubMed ID: 29029043 [Abstract] [Full Text] [Related]
4. Oxidative degradation of commingled trichloroethylene and 1,4-dioxane by hydroxyl radicals produced upon oxygenation of a reduced clay mineral. Zhou Z, Zeng Q, Li G, Hu D, Xia Q, Dong H. Chemosphere; 2022 Mar 15; 290():133265. PubMed ID: 34914951 [Abstract] [Full Text] [Related]
5. Co-occurrence of 1,4-dioxane with trichloroethylene in chlorinated solvent groundwater plumes at US Air Force installations: Fact or fiction. Anderson RH, Anderson JK, Bower PA. Integr Environ Assess Manag; 2012 Oct 15; 8(4):731-7. PubMed ID: 22492728 [Abstract] [Full Text] [Related]
6. Resistance of perfluorooctanoic acid to degradation by the microbially driven Fenton reaction. Toporek Y, Shin HD, DiChristina TJ. FEMS Microbiol Lett; 2022 Jan 25; 368(21-24):. PubMed ID: 34918061 [Abstract] [Full Text] [Related]
7. Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones. He F, Zhao D, Paul C. Water Res; 2010 Apr 25; 44(7):2360-70. PubMed ID: 20106501 [Abstract] [Full Text] [Related]
8. Biodegradation of 1,4-dioxane: effects of enzyme inducers and trichloroethylene. Hand S, Wang B, Chu KH. Sci Total Environ; 2015 Jul 01; 520():154-9. PubMed ID: 25813968 [Abstract] [Full Text] [Related]
9. Potential waste minimization of trichloroethylene and perchloroethylene via aerobic biodegradation. Wang J, Cutright TJ. J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005 Jul 01; 40(8):1569-84. PubMed ID: 15991724 [Abstract] [Full Text] [Related]
10. Transformation of mackinawite to greigite by trichloroethylene and tetrachloroethylene. Lan Y, Elwood Madden AS, Butler EC. Environ Sci Process Impacts; 2016 Oct 12; 18(10):1266-1273. PubMed ID: 27711891 [Abstract] [Full Text] [Related]
11. The relative contributions of abiotic and microbial processes to the transformation of tetrachloroethylene and trichloroethylene in anaerobic microcosms. Dong Y, Liang X, Krumholz LR, Philp RP, Butler EC. Environ Sci Technol; 2009 Feb 01; 43(3):690-7. PubMed ID: 19245003 [Abstract] [Full Text] [Related]
12. Kinetics and modeling of reductive dechlorination at high PCE and TCE concentrations. Yu S, Semprini L. Biotechnol Bioeng; 2004 Nov 20; 88(4):451-64. PubMed ID: 15384053 [Abstract] [Full Text] [Related]
13. In situ remediation of tetrachloroethylene and its intermediates in groundwater using an anaerobic/aerobic permeable reactive barrier. Liu S, Yang Q, Yang Y, Ding H, Qi Y. Environ Sci Pollut Res Int; 2017 Dec 20; 24(34):26615-26622. PubMed ID: 28956245 [Abstract] [Full Text] [Related]
14. Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions. Freedman DL, Gossett JM. Appl Environ Microbiol; 1989 Sep 20; 55(9):2144-51. PubMed ID: 2552919 [Abstract] [Full Text] [Related]
15. Aerobic degradation of mixtures of tetrachloroethylene, trichloroethylene, dichloroethylenes, and vinyl chloride by toluene-o-xylene monooxygenase of Pseudomonas stutzeri OX1. Shim H, Ryoo D, Barbieri P, Wood TK. Appl Microbiol Biotechnol; 2001 Jul 20; 56(1-2):265-9. PubMed ID: 11499942 [Abstract] [Full Text] [Related]
16. Hydroxyl radical and non-hydroxyl radical pathways for trichloroethylene and perchloroethylene degradation in catalyzed H2O2 propagation systems. Watts RJ, Teel AL. Water Res; 2019 Aug 01; 159():46-54. PubMed ID: 31078751 [Abstract] [Full Text] [Related]
17. [Biodegradation of tri- and perchloroethylene in sewage waters and soils by a microbial consortium of compost and phototrophic bacteria]. Ten Khak Mun, Kirienko OA. Izv Akad Nauk Ser Biol; 2011 Aug 01; (5):625-9. PubMed ID: 22117431 [Abstract] [Full Text] [Related]
18. Peroxone activated persulfate treatment of 1,4-dioxane in the presence of chlorinated solvent co-contaminants. Eberle D, Ball R, Boving TB. Chemosphere; 2016 Feb 01; 144():728-35. PubMed ID: 26408980 [Abstract] [Full Text] [Related]
19. The mechanism and applicability of in situ oxidation of trichloroethylene with Fenton's reagent. Chen G, Hoag GE, Chedda P, Nadim F, Woody BA, Dobbs GM. J Hazard Mater; 2001 Oct 12; 87(1-3):171-86. PubMed ID: 11566408 [Abstract] [Full Text] [Related]
20. Large-scale production of bacterial consortia for remediation of chlorinated solvent-contaminated groundwater. Vainberg S, Condee CW, Steffan RJ. J Ind Microbiol Biotechnol; 2009 Sep 12; 36(9):1189-97. PubMed ID: 19521729 [Abstract] [Full Text] [Related] Page: [Next] [New Search]