These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


524 related items for PubMed ID: 27542932

  • 21. Aerobic biodegradation of trichloroethylene and phenol co-contaminants in groundwater by a bacterial community using hydrogen peroxide as the sole oxygen source.
    Li H, Zhang SY, Wang XL, Yang J, Gu JD, Zhu RL, Wang P, Lin KF, Liu YD.
    Environ Technol; 2015; 36(5-8):667-74. PubMed ID: 25220534
    [Abstract] [Full Text] [Related]

  • 22. In-situ biodegradation of tetrachloroethene and trichloroethene in contaminated aquifers monitored by stable isotope fractionation.
    Vieth A, Müller J, Strauch G, Kästner M, Gehre M, Meckenstock RU, Richnow HH.
    Isotopes Environ Health Stud; 2003 Jun; 39(2):113-24. PubMed ID: 12872803
    [Abstract] [Full Text] [Related]

  • 23. Sequential anaerobic and aerobic bioaugmentation for commingled groundwater contamination of trichloroethene and 1,4-dioxane.
    Li F, Deng D, Zeng L, Abrams S, Li M.
    Sci Total Environ; 2021 Jun 20; 774():145118. PubMed ID: 33610989
    [Abstract] [Full Text] [Related]

  • 24. Anaerobic bioremediation of groundwater containing a mixture of 1,1,2,2-tetrachloroethane and chloroethenes.
    Aulenta F, Potalivo M, Majone M, Papini MP, Tandoi V.
    Biodegradation; 2006 Jun 20; 17(3):193-206. PubMed ID: 16715399
    [Abstract] [Full Text] [Related]

  • 25. Cyclodextrin-enhanced 1,4-dioxane treatment kinetics with TCE and 1,1,1-TCA using aqueous ozone.
    Khan NA, Johnson MD, Kubicki JD, Holguin FO, Dungan B, Carroll KC.
    Chemosphere; 2019 Mar 20; 219():335-344. PubMed ID: 30551099
    [Abstract] [Full Text] [Related]

  • 26. Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions.
    Vogel TM, McCarty PL.
    Appl Environ Microbiol; 1985 May 20; 49(5):1080-3. PubMed ID: 3923927
    [Abstract] [Full Text] [Related]

  • 27. 1,4-Dioxane cosolvency impacts on trichloroethene dissolution and sorption.
    Milavec J, Tick GR, Brusseau ML, Carroll KC.
    Environ Pollut; 2019 Sep 20; 252(Pt A):777-783. PubMed ID: 31200203
    [Abstract] [Full Text] [Related]

  • 28. Treatment of 1,4-dioxane and trichloroethene co-contamination by an activated binary persulfate-peroxide oxidation process.
    Yan N, Liu F, Liu B, Brusseau ML.
    Environ Sci Pollut Res Int; 2018 Nov 20; 25(32):32088-32095. PubMed ID: 30218336
    [Abstract] [Full Text] [Related]

  • 29. Comparison of mineral and soluble iron Fenton's catalysts for the treatment of trichloroethylene.
    Teel AL, Warberg CR, Atkinson DA, Watts RJ.
    Water Res; 2001 Mar 20; 35(4):977-84. PubMed ID: 11235893
    [Abstract] [Full Text] [Related]

  • 30. Biodegradation Kinetics of 1,4-Dioxane in Chlorinated Solvent Mixtures.
    Zhang S, Gedalanga PB, Mahendra S.
    Environ Sci Technol; 2016 Sep 06; 50(17):9599-607. PubMed ID: 27486928
    [Abstract] [Full Text] [Related]

  • 31. Co-contaminant effects on 1,4-dioxane biodegradation in packed soil column flow-through systems.
    Zhao L, Lu X, Polasko A, Johnson NW, Miao Y, Yang Z, Mahendra S, Gu B.
    Environ Pollut; 2018 Dec 06; 243(Pt A):573-581. PubMed ID: 30216889
    [Abstract] [Full Text] [Related]

  • 32. Effect of source variability and transport processes on carbon isotope ratios of TCE and PCE in two sandy aquifers.
    Hunkeler D, Chollet N, Pittet X, Aravena R, Cherry JA, Parker BL.
    J Contam Hydrol; 2004 Oct 06; 74(1-4):265-82. PubMed ID: 15358496
    [Abstract] [Full Text] [Related]

  • 33. Biocatalytic dechlorination of trichloroethylene with bio-palladium in a pilot-scale membrane reactor.
    Hennebel T, Simoen H, De Windt W, Verloo M, Boon N, Verstraete W.
    Biotechnol Bioeng; 2009 Mar 01; 102(4):995-1002. PubMed ID: 18949748
    [Abstract] [Full Text] [Related]

  • 34. Unintentional contaminant transfer from groundwater to the vadose zone during source zone remediation of volatile organic compounds.
    Chong AD, Mayer KU.
    J Contam Hydrol; 2017 Sep 01; 204():1-10. PubMed ID: 28830695
    [Abstract] [Full Text] [Related]

  • 35. Enhanced Fenton-like degradation of TCE in sand suspensions with magnetite by NTA/EDTA at circumneutral pH.
    Wang N, Jia D, Jin Y, Sun SP, Ke Q.
    Environ Sci Pollut Res Int; 2017 Jul 01; 24(21):17598-17605. PubMed ID: 28597389
    [Abstract] [Full Text] [Related]

  • 36. Enhancing effects of trichloroethylene and tetrachloroethylene on type I allergic responses in mice.
    Seo M, Kobayashi R, Okamura T, Ikeda K, Satoh M, Inagaki N, Nagai H, Nagase H.
    J Toxicol Sci; 2012 Jul 01; 37(2):439-45. PubMed ID: 22467035
    [Abstract] [Full Text] [Related]

  • 37. Stable carbon isotope fractionation during trichloroethene degradation in magnetite-catalyzed Fenton-like reaction.
    Liu Y, Zhou A, Gan Y, Liu C, Yu T, Li X.
    J Contam Hydrol; 2013 Feb 01; 145():37-43. PubMed ID: 23286906
    [Abstract] [Full Text] [Related]

  • 38. Reduction of PCE and TCE by magnetite revisited.
    Culpepper JD, Scherer MM, Robinson TC, Neumann A, Cwiertny D, Latta DE.
    Environ Sci Process Impacts; 2018 Oct 17; 20(10):1340-1349. PubMed ID: 30191930
    [Abstract] [Full Text] [Related]

  • 39. Inhibition of aerobic metabolic cis-1,2-di-chloroethene biodegradation by other chloroethenes.
    Zhao HP, Schmidt KR, Tiehm A.
    Water Res; 2010 Apr 17; 44(7):2276-82. PubMed ID: 20079512
    [Abstract] [Full Text] [Related]

  • 40. [Dechlorination of chlorinated ethenes under different redox conditions].
    Lu X, Li G, Zhang X, Zhang W.
    Huan Jing Ke Xue; 2002 Mar 17; 23(2):29-33. PubMed ID: 12048814
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 27.