These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1883 related items for PubMed ID: 27544808

  • 1. PEGylated poly(glycerol sebacate)-modified calcium phosphate scaffolds with desirable mechanical behavior and enhanced osteogenic capacity.
    Ma Y, Zhang W, Wang Z, Wang Z, Xie Q, Niu H, Guo H, Yuan Y, Liu C.
    Acta Biomater; 2016 Oct 15; 44():110-24. PubMed ID: 27544808
    [Abstract] [Full Text] [Related]

  • 2. A poly(glycerol sebacate)-coated mesoporous bioactive glass scaffold with adjustable mechanical strength, degradation rate, controlled-release and cell behavior for bone tissue engineering.
    Lin D, Yang K, Tang W, Liu Y, Yuan Y, Liu C.
    Colloids Surf B Biointerfaces; 2015 Jul 01; 131():1-11. PubMed ID: 25935647
    [Abstract] [Full Text] [Related]

  • 3. β-Tricalcium phosphate/poly(glycerol sebacate) scaffolds with robust mechanical property for bone tissue engineering.
    Yang K, Zhang J, Ma X, Ma Y, Kan C, Ma H, Li Y, Yuan Y, Liu C.
    Mater Sci Eng C Mater Biol Appl; 2015 Nov 01; 56():37-47. PubMed ID: 26249563
    [Abstract] [Full Text] [Related]

  • 4. Urethane-based low-temperature curing, highly-customized and multifunctional poly(glycerol sebacate)-co-poly(ethylene glycol) copolymers.
    Wang Z, Ma Y, Wang Y, Liu Y, Chen K, Wu Z, Yu S, Yuan Y, Liu C.
    Acta Biomater; 2018 Apr 15; 71():279-292. PubMed ID: 29549052
    [Abstract] [Full Text] [Related]

  • 5. Poly (glycerol sebacate) elastomer supports bone regeneration by its mechanical properties being closer to osteoid tissue rather than to mature bone.
    Zaky SH, Lee KW, Gao J, Jensen A, Verdelis K, Wang Y, Almarza AJ, Sfeir C.
    Acta Biomater; 2017 May 15; 54():95-106. PubMed ID: 28110067
    [Abstract] [Full Text] [Related]

  • 6. Biomimetic poly(glycerol sebacate)/polycaprolactone blend scaffolds for cartilage tissue engineering.
    Liu Y, Tian K, Hao J, Yang T, Geng X, Zhang W.
    J Mater Sci Mater Med; 2019 Apr 29; 30(5):53. PubMed ID: 31037512
    [Abstract] [Full Text] [Related]

  • 7. Enhanced osteogenic proliferation and differentiation of human adipose-derived stem cells on a porous n-HA/PGS-M composite scaffold.
    Wang Y, Sun N, Zhang Y, Zhao B, Zhang Z, Zhou X, Zhou Y, Liu H, Zhang Y, Liu J.
    Sci Rep; 2019 May 28; 9(1):7960. PubMed ID: 31138861
    [Abstract] [Full Text] [Related]

  • 8. Repair of critical-sized bone defects with anti-miR-31-expressing bone marrow stromal stem cells and poly(glycerol sebacate) scaffolds.
    Deng Y, Bi X, Zhou H, You Z, Wang Y, Gu P, Fan X.
    Eur Cell Mater; 2014 Jan 15; 27():13-24; discussion 24-5. PubMed ID: 24425157
    [Abstract] [Full Text] [Related]

  • 9. In vitro degradation, biocompatibility, and in vivo osteogenesis of poly(lactic-co-glycolic acid)/calcium phosphate cement scaffold with unidirectional lamellar pore structure.
    He F, Ye J.
    J Biomed Mater Res A; 2012 Dec 15; 100(12):3239-50. PubMed ID: 22733543
    [Abstract] [Full Text] [Related]

  • 10. Preparation of dexamethasone-loaded biphasic calcium phosphate nanoparticles/collagen porous composite scaffolds for bone tissue engineering.
    Chen Y, Kawazoe N, Chen G.
    Acta Biomater; 2018 Feb 15; 67():341-353. PubMed ID: 29242161
    [Abstract] [Full Text] [Related]

  • 11. Nano-Hydroxyapatite Coating Promotes Porous Calcium Phosphate Ceramic-Induced Osteogenesis Via BMP/Smad Signaling Pathway.
    Wang J, Wang M, Chen F, Wei Y, Chen X, Zhou Y, Yang X, Zhu X, Tu C, Zhang X.
    Int J Nanomedicine; 2019 Feb 15; 14():7987-8000. PubMed ID: 31632013
    [Abstract] [Full Text] [Related]

  • 12. Direct deposited porous scaffolds of calcium phosphate cement with alginate for drug delivery and bone tissue engineering.
    Lee GS, Park JH, Shin US, Kim HW.
    Acta Biomater; 2011 Aug 15; 7(8):3178-86. PubMed ID: 21539944
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Collagen-calcium phosphate cement scaffolds seeded with umbilical cord stem cells for bone tissue engineering.
    Thein-Han W, Xu HH.
    Tissue Eng Part A; 2011 Dec 15; 17(23-24):2943-54. PubMed ID: 21851269
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Biofunctionalized chondrogenic shape-memory ternary scaffolds for efficient cell-free cartilage regeneration.
    Xuan H, Hu H, Geng C, Song J, Shen Y, Lei D, Guan Q, Zhao S, You Z.
    Acta Biomater; 2020 Mar 15; 105():97-110. PubMed ID: 31953195
    [Abstract] [Full Text] [Related]

  • 17. RhBMP-2-loaded calcium silicate/calcium phosphate cement scaffold with hierarchically porous structure for enhanced bone tissue regeneration.
    Zhang J, Zhou H, Yang K, Yuan Y, Liu C.
    Biomaterials; 2013 Dec 15; 34(37):9381-92. PubMed ID: 24044997
    [Abstract] [Full Text] [Related]

  • 18. Non-rigid calcium phosphate cement containing hydrogel microbeads and absorbable fibres seeded with umbilical cord stem cells for bone engineering.
    TheinHan W, Weir MD, Simon CG, Xu HH.
    J Tissue Eng Regen Med; 2013 Oct 15; 7(10):777-87. PubMed ID: 22451091
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Natural stimulus responsive scaffolds/cells for bone tissue engineering: influence of lysozyme upon scaffold degradation and osteogenic differentiation of cultured marrow stromal cells induced by CaP coatings.
    Martins AM, Pham QP, Malafaya PB, Raphael RM, Kasper FK, Reis RL, Mikos AG.
    Tissue Eng Part A; 2009 Aug 15; 15(8):1953-63. PubMed ID: 19327018
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 95.