These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


187 related items for PubMed ID: 27548261

  • 1. Selection of Novel Peptides Homing the 4T1 CELL Line: Exploring Alternative Targets for Triple Negative Breast Cancer.
    Silva VL, Ferreira D, Nobrega FL, Martins IM, Kluskens LD, Rodrigues LR.
    PLoS One; 2016; 11(8):e0161290. PubMed ID: 27548261
    [Abstract] [Full Text] [Related]

  • 2. Screening and characterization of novel specific peptides targeting MDA-MB-231 claudin-low breast carcinoma by computer-aided phage display methodologies.
    Nobrega FL, Ferreira D, Martins IM, Suarez-Diez M, Azeredo J, Kluskens LD, Rodrigues LR.
    BMC Cancer; 2016 Nov 14; 16(1):881. PubMed ID: 27842517
    [Abstract] [Full Text] [Related]

  • 3. Landscape phages and their fusion proteins targeted to breast cancer cells.
    Fagbohun OA, Bedi D, Grabchenko NI, Deinnocentes PA, Bird RC, Petrenko VA.
    Protein Eng Des Sel; 2012 Jun 14; 25(6):271-83. PubMed ID: 22490956
    [Abstract] [Full Text] [Related]

  • 4. Small Peptide Ligands for Targeting EGFR in Triple Negative Breast Cancer Cells.
    Hossein-Nejad-Ariani H, Althagafi E, Kaur K.
    Sci Rep; 2019 Feb 25; 9(1):2723. PubMed ID: 30804365
    [Abstract] [Full Text] [Related]

  • 5. A novel approach for targeted elimination of CSPG4-positive triple-negative breast cancer cells using a MAP tau-based fusion protein.
    Amoury M, Mladenov R, Nachreiner T, Pham AT, Hristodorov D, Di Fiore S, Helfrich W, Pardo A, Fey G, Schwenkert M, Thepen T, Kiessling F, Hussain AF, Fischer R, Kolberg K, Barth S.
    Int J Cancer; 2016 Aug 15; 139(4):916-27. PubMed ID: 27037627
    [Abstract] [Full Text] [Related]

  • 6. Induction of mitochondrial apoptotic pathway in triple negative breast carcinoma cells by methylglyoxal via generation of reactive oxygen species.
    Roy A, Ahir M, Bhattacharya S, Parida PK, Adhikary A, Jana K, Ray M.
    Mol Carcinog; 2017 Sep 15; 56(9):2086-2103. PubMed ID: 28418078
    [Abstract] [Full Text] [Related]

  • 7. Tryptophan hydroxylase 1 and 5-HT7 receptor preferentially expressed in triple-negative breast cancer promote cancer progression through autocrine serotonin signaling.
    Gautam J, Banskota S, Regmi SC, Ahn S, Jeon YH, Jeong H, Kim SJ, Nam TG, Jeong BS, Kim JA.
    Mol Cancer; 2016 Nov 21; 15(1):75. PubMed ID: 27871326
    [Abstract] [Full Text] [Related]

  • 8. Targeted Pten deletion plus p53-R270H mutation in mouse mammary epithelium induces aggressive claudin-low and basal-like breast cancer.
    Wang S, Liu JC, Kim D, Datti A, Zacksenhaus E.
    Breast Cancer Res; 2016 Jan 19; 18(1):9. PubMed ID: 26781438
    [Abstract] [Full Text] [Related]

  • 9. AHNAK suppresses tumour proliferation and invasion by targeting multiple pathways in triple-negative breast cancer.
    Chen B, Wang J, Dai D, Zhou Q, Guo X, Tian Z, Huang X, Yang L, Tang H, Xie X.
    J Exp Clin Cancer Res; 2017 May 12; 36(1):65. PubMed ID: 28494797
    [Abstract] [Full Text] [Related]

  • 10. Peptide mediated active targeting and intelligent particle size reduction-mediated enhanced penetrating of fabricated nanoparticles for triple-negative breast cancer treatment.
    Hu G, Chun X, Wang Y, He Q, Gao H.
    Oncotarget; 2015 Dec 01; 6(38):41258-74. PubMed ID: 26517810
    [Abstract] [Full Text] [Related]

  • 11. Validation of a network-based strategy for the optimization of combinatorial target selection in breast cancer therapy: siRNA knockdown of network targets in MDA-MB-231 cells as an in vitro model for inhibition of tumor development.
    Tilli TM, Carels N, Tuszynski JA, Pasdar M.
    Oncotarget; 2016 Sep 27; 7(39):63189-63203. PubMed ID: 27527857
    [Abstract] [Full Text] [Related]

  • 12. Nucleolin overexpression in breast cancer cell sub-populations with different stem-like phenotype enables targeted intracellular delivery of synergistic drug combination.
    Fonseca NA, Rodrigues AS, Rodrigues-Santos P, Alves V, Gregório AC, Valério-Fernandes Â, Gomes-da-Silva LC, Rosa MS, Moura V, Ramalho-Santos J, Simões S, Moreira JN.
    Biomaterials; 2015 Nov 27; 69():76-88. PubMed ID: 26283155
    [Abstract] [Full Text] [Related]

  • 13. Targeting the cancer-associated fibroblasts as a treatment in triple-negative breast cancer.
    Takai K, Le A, Weaver VM, Werb Z.
    Oncotarget; 2016 Dec 13; 7(50):82889-82901. PubMed ID: 27756881
    [Abstract] [Full Text] [Related]

  • 14. Peptide density targets and impedes triple negative breast cancer metastasis.
    Liu D, Guo P, McCarthy C, Wang B, Tao Y, Auguste D.
    Nat Commun; 2018 Jul 04; 9(1):2612. PubMed ID: 29973594
    [Abstract] [Full Text] [Related]

  • 15. Development of Cyclic Peptides Targeting the Epidermal Growth Factor Receptor in Mesenchymal Triple-Negative Breast Cancer Subtype.
    Nisticò N, Aloisio A, Lupia A, Zimbo AM, Mimmi S, Maisano D, Russo R, Marino F, Scalise M, Chiarella E, Mancuso T, Fiume G, Omodei D, Zannetti A, Salvatore G, Quinto I, Iaccino E.
    Cells; 2023 Apr 03; 12(7):. PubMed ID: 37048151
    [Abstract] [Full Text] [Related]

  • 16. Preclinical evaluation of cyclin dependent kinase 11 and casein kinase 2 survival kinases as RNA interference targets for triple negative breast cancer therapy.
    Kren BT, Unger GM, Abedin MJ, Vogel RI, Henzler CM, Ahmed K, Trembley JH.
    Breast Cancer Res; 2015 Apr 03; 17():19. PubMed ID: 25837326
    [Abstract] [Full Text] [Related]

  • 17. Combination of the novel histone deacetylase inhibitor YCW1 and radiation induces autophagic cell death through the downregulation of BNIP3 in triple-negative breast cancer cells in vitro and in an orthotopic mouse model.
    Chiu HW, Yeh YL, Wang YC, Huang WJ, Ho SY, Lin P, Wang YJ.
    Mol Cancer; 2016 Jun 10; 15(1):46. PubMed ID: 27286975
    [Abstract] [Full Text] [Related]

  • 18. Granzyme B-based cytolytic fusion protein targeting EpCAM specifically kills triple negative breast cancer cells in vitro and inhibits tumor growth in a subcutaneous mouse tumor model.
    Amoury M, Kolberg K, Pham AT, Hristodorov D, Mladenov R, Di Fiore S, Helfrich W, Kiessling F, Fischer R, Pardo A, Thepen T, Hussain AF, Nachreiner T, Barth S.
    Cancer Lett; 2016 Mar 28; 372(2):201-9. PubMed ID: 26806809
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.