These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. TBX3 promotes progression of pre-invasive breast cancer cells by inducing EMT and directly up-regulating SLUG. Krstic M, Kolendowski B, Cecchini MJ, Postenka CO, Hassan HM, Andrews J, MacMillan CD, Williams KC, Leong HS, Brackstone M, Torchia J, Chambers AF, Tuck AB. J Pathol; 2019 Jun; 248(2):191-203. PubMed ID: 30697731 [Abstract] [Full Text] [Related]
3. Human 21T breast epithelial cell lines mimic breast cancer progression in vivo and in vitro and show stage-specific gene expression patterns. Souter LH, Andrews JD, Zhang G, Cook AC, Postenka CO, Al-Katib W, Leong HS, Rodenhiser DI, Chambers AF, Tuck AB. Lab Invest; 2010 Aug; 90(8):1247-58. PubMed ID: 20458274 [Abstract] [Full Text] [Related]
4. The microRNA-205-5p is correlated to metastatic potential of 21T series: A breast cancer progression model. Stankevicins L, Barat A, Dessen P, Vassetzky Y, de Moura Gallo CV. PLoS One; 2017 Aug; 12(3):e0173756. PubMed ID: 28346474 [Abstract] [Full Text] [Related]
7. Dynamically decreased miR-671-5p expression is associated with oncogenic transformation and radiochemoresistance in breast cancer. Tan X, Li Z, Ren S, Rezaei K, Pan Q, Goldstein AT, Macri CJ, Cao D, Brem RF, Fu SW. Breast Cancer Res; 2019 Aug 07; 21(1):89. PubMed ID: 31391072 [Abstract] [Full Text] [Related]
8. Stage of breast cancer progression influences cellular response to activation of the WNT/planar cell polarity pathway. MacMillan CD, Leong HS, Dales DW, Robertson AE, Lewis JD, Chambers AF, Tuck AB. Sci Rep; 2014 Sep 10; 4():6315. PubMed ID: 25204426 [Abstract] [Full Text] [Related]
9. [Promoter methylation and mRNA expression of WT1 gene in MCF10 breast cancer model]. Yang JL, Klinkebiel D, Boland MJ, Tang L, Christman JK. Zhonghua Bing Li Xue Za Zhi; 2007 Apr 10; 36(4):253-8. PubMed ID: 17706117 [Abstract] [Full Text] [Related]
10. Loss of interferon regulatory factor 5 (IRF5) expression in human ductal carcinoma correlates with disease stage and contributes to metastasis. Bi X, Hameed M, Mirani N, Pimenta EM, Anari J, Barnes BJ. Breast Cancer Res; 2011 Apr 10; 13(6):R111. PubMed ID: 22053985 [Abstract] [Full Text] [Related]
11. Role of deregulated microRNAs in breast cancer progression using FFPE tissue. Chen L, Li Y, Fu Y, Peng J, Mo MH, Stamatakos M, Teal CB, Brem RF, Stojadinovic A, Grinkemeyer M, McCaffrey TA, Man YG, Fu SW. PLoS One; 2013 Apr 10; 8(1):e54213. PubMed ID: 23372687 [Abstract] [Full Text] [Related]
12. Epithelial-mesenchymal transition increases during the progression of in situ to invasive basal-like breast cancer. Choi Y, Lee HJ, Jang MH, Gwak JM, Lee KS, Kim EJ, Kim HJ, Lee HE, Park SY. Hum Pathol; 2013 Nov 10; 44(11):2581-9. PubMed ID: 24055090 [Abstract] [Full Text] [Related]
13. Gene expression profiling of tumour epithelial and stromal compartments during breast cancer progression. Vargas AC, McCart Reed AE, Waddell N, Lane A, Reid LE, Smart CE, Cocciardi S, da Silva L, Song S, Chenevix-Trench G, Simpson PT, Lakhani SR. Breast Cancer Res Treat; 2012 Aug 10; 135(1):153-65. PubMed ID: 22718308 [Abstract] [Full Text] [Related]
14. Ectopic expression of PLC-β2 in non-invasive breast tumor cells plays a protective role against malignant progression and is correlated with the deregulation of miR-146a. Bertagnolo V, Grassilli S, Volinia S, Al-Qassab Y, Brugnoli F, Vezzali F, Lambertini E, Palomba M, Piubello Q, Orvieto E, Natali C, Piva R, Croce CM, Capitani S. Mol Carcinog; 2019 May 10; 58(5):708-721. PubMed ID: 30582225 [Abstract] [Full Text] [Related]
15. Profiling differential microRNA expression between in situ, infiltrative and lympho-vascular space invasive breast cancer: a pilot study. Soon PS, Provan PJ, Kim E, Pathmanathan N, Graham D, Clarke CL, Balleine RL. Clin Exp Metastasis; 2018 Feb 10; 35(1-2):3-13. PubMed ID: 29214365 [Abstract] [Full Text] [Related]
16. Expression profiling of in vivo ductal carcinoma in situ progression models identified B cell lymphoma-9 as a molecular driver of breast cancer invasion. Elsarraj HS, Hong Y, Valdez KE, Michaels W, Hook M, Smith WP, Chien J, Herschkowitz JI, Troester MA, Beck M, Inciardi M, Gatewood J, May L, Cusick T, McGinness M, Ricci L, Fan F, Tawfik O, Marks JR, Knapp JR, Yeh HW, Thomas P, Carrasco DR, Fields TA, Godwin AK, Behbod F. Breast Cancer Res; 2015 Sep 17; 17():128. PubMed ID: 26384318 [Abstract] [Full Text] [Related]
17. TOPK promotes epithelial-mesenchymal transition and invasion of breast cancer cells through upregulation of TBX3 in TGF-β1/Smad signaling. Lee YJ, Park JH, Oh SM. Biochem Biophys Res Commun; 2020 Jan 29; 522(1):270-277. PubMed ID: 31757421 [Abstract] [Full Text] [Related]
18. Differentially expressed genes regulating the progression of ductal carcinoma in situ to invasive breast cancer. Lee S, Stewart S, Nagtegaal I, Luo J, Wu Y, Colditz G, Medina D, Allred DC. Cancer Res; 2012 Sep 01; 72(17):4574-86. PubMed ID: 22751464 [Abstract] [Full Text] [Related]
19. The SEMA3F-NRP1/NRP2 axis is a key factor in the acquisition of invasive traits in in situ breast ductal carcinoma. Moragas N, Fernandez-Nogueira P, Recalde-Percaz L, Inman JL, López-Plana A, Bergholtz H, Noguera-Castells A, Del Burgo PJ, Chen X, Sorlie T, Gascón P, Bragado P, Bissell M, Carbó N, Fuster G. Breast Cancer Res; 2024 Aug 13; 26(1):122. PubMed ID: 39138514 [Abstract] [Full Text] [Related]
20. The expression of stem cell protein Piwil2 and piR-932 in breast cancer. Zhang H, Ren Y, Xu H, Pang D, Duan C, Liu C. Surg Oncol; 2013 Dec 13; 22(4):217-23. PubMed ID: 23992744 [Abstract] [Full Text] [Related] Page: [Next] [New Search]