These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


196 related items for PubMed ID: 27557749

  • 1. Integrative effect of drought and low temperature on litchi (Litchi chinensis Sonn.) floral initiation revealed by dynamic genome-wide transcriptome analysis.
    Shen J, Xiao Q, Qiu H, Chen C, Chen H.
    Sci Rep; 2016 Aug 25; 6():32005. PubMed ID: 27557749
    [Abstract] [Full Text] [Related]

  • 2. Transcriptome profiling of litchi leaves in response to low temperature reveals candidate regulatory genes and key metabolic events during floral induction.
    Zhang H, Shen J, Wei Y, Chen H.
    BMC Genomics; 2017 May 10; 18(1):363. PubMed ID: 28486930
    [Abstract] [Full Text] [Related]

  • 3. Transcriptomic analysis of floral initiation in litchi (Litchi chinensis Sonn.) based on de novo RNA sequencing.
    Zhang HN, Wei YZ, Shen JY, Lai B, Huang XM, Ding F, Su ZX, Chen HB.
    Plant Cell Rep; 2014 Oct 10; 33(10):1723-35. PubMed ID: 25023873
    [Abstract] [Full Text] [Related]

  • 4. Genome-Wide Transcriptomic Analysis Reveals a Regulatory Network of Oxidative Stress-Induced Flowering Signals Produced in Litchi Leaves.
    Lu X, Yu S, Lü P, Chen H, Zhong S, Zhou B.
    Genes (Basel); 2020 Mar 18; 11(3):. PubMed ID: 32197528
    [Abstract] [Full Text] [Related]

  • 5. Promoter difference of LcFT1 is a leading cause of natural variation of flowering timing in different litchi cultivars (Litchi chinensis Sonn.).
    Ding F, Zhang S, Chen H, Su Z, Zhang R, Xiao Q, Li H.
    Plant Sci; 2015 Dec 18; 241():128-37. PubMed ID: 26706065
    [Abstract] [Full Text] [Related]

  • 6. Genome-wide transcriptome analysis reveals the molecular mechanism of high temperature-induced floral abortion in Litchi chinensis.
    Liu H, Wang C, Chen H, Zhou B.
    BMC Genomics; 2019 Feb 11; 20(1):127. PubMed ID: 30744557
    [Abstract] [Full Text] [Related]

  • 7. RNA-seq analysis of apical meristem reveals integrative regulatory network of ROS and chilling potentially related to flowering in Litchi chinensis.
    Lu X, Li J, Chen H, Hu J, Liu P, Zhou B.
    Sci Rep; 2017 Aug 31; 7(1):10183. PubMed ID: 28860553
    [Abstract] [Full Text] [Related]

  • 8. Differential gene expression between the vigorous and dwarf litchi cultivars based on RNA-Seq transcriptome analysis.
    Hu F, Chen Z, Zhao J, Wang X, Su W, Qin Y, Hu G.
    PLoS One; 2018 Aug 31; 13(12):e0208771. PubMed ID: 30540829
    [Abstract] [Full Text] [Related]

  • 9. Comprehensive transcriptomics and proteomics analyses of pollinated and parthenocarpic litchi (Litchi chinensis Sonn.) fruits during early development.
    Liu W, Chen M, Bai L, Zhuang Z, Fan C, Jiang N, Zhao J, Ma S, Xiang X.
    Sci Rep; 2017 Jul 14; 7(1):5401. PubMed ID: 28710486
    [Abstract] [Full Text] [Related]

  • 10. De novo assembly and characterization of fruit transcriptome in Litchi chinensis Sonn and analysis of differentially regulated genes in fruit in response to shading.
    Li C, Wang Y, Huang X, Li J, Wang H, Li J.
    BMC Genomics; 2013 Aug 14; 14():552. PubMed ID: 23941440
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. De novo transcriptome assembly for rudimentary leaves in Litchi chinesis Sonn. and identification of differentially expressed genes in response to reactive oxygen species.
    Lu X, Kim H, Zhong S, Chen H, Hu Z, Zhou B.
    BMC Genomics; 2014 Sep 20; 15(1):805. PubMed ID: 25239404
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Metabolomics Analysis of Litchi Leaves during Floral Induction Reveals Metabolic Improvement by Stem Girdling.
    Su Z, Xiao Q, Shen J, Chen H, Yan S, Huang W.
    Molecules; 2021 Jul 02; 26(13):. PubMed ID: 34279388
    [Abstract] [Full Text] [Related]

  • 17. Characterization of a novel litchi R2R3-MYB transcription factor that involves in anthocyanin biosynthesis and tissue acidification.
    Lai B, Du LN, Hu B, Wang D, Huang XM, Zhao JT, Wang HC, Hu GB.
    BMC Plant Biol; 2019 Feb 07; 19(1):62. PubMed ID: 30732564
    [Abstract] [Full Text] [Related]

  • 18. Identification of Genes Involved in Low Temperature-Induced Senescence of Panicle Leaf in Litchi chinensis.
    Wang C, Liu H, Yu S, Chen H, Hu F, Zhan H, Pan X, Lao Y, Zhong S, Zhou B.
    Genes (Basel); 2019 Feb 01; 10(2):. PubMed ID: 30717231
    [Abstract] [Full Text] [Related]

  • 19. LcMCII-1 is involved in the ROS-dependent senescence of the rudimentary leaves of Litchi chinensis.
    Wang C, Lü P, Zhong S, Chen H, Zhou B.
    Plant Cell Rep; 2017 Jan 01; 36(1):89-102. PubMed ID: 27682163
    [Abstract] [Full Text] [Related]

  • 20. RNA-seq based transcriptomic analysis uncovers α-linolenic acid and jasmonic acid biosynthesis pathways respond to cold acclimation in Camellia japonica.
    Li Q, Lei S, Du K, Li L, Pang X, Wang Z, Wei M, Fu S, Hu L, Xu L.
    Sci Rep; 2016 Nov 07; 6():36463. PubMed ID: 27819341
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.