These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


435 related items for PubMed ID: 27561528

  • 1. In-situ polymerized cellulose nanocrystals (CNC)-poly(l-lactide) (PLLA) nanomaterials and applications in nanocomposite processing.
    Miao C, Hamad WY.
    Carbohydr Polym; 2016 Nov 20; 153():549-558. PubMed ID: 27561528
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Reinforced Mechanical Properties and Tunable Biodegradability in Nanoporous Cellulose Gels: Poly(L-lactide-co-caprolactone) Nanocomposites.
    Li K, Huang J, Gao H, Zhong Y, Cao X, Chen Y, Zhang L, Cai J.
    Biomacromolecules; 2016 Apr 11; 17(4):1506-15. PubMed ID: 26955741
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. PVA bio-nanocomposites: a new take-off using cellulose nanocrystals and PLGA nanoparticles.
    Rescignano N, Fortunati E, Montesano S, Emiliani C, Kenny JM, Martino S, Armentano I.
    Carbohydr Polym; 2014 Jan 11; 99():47-58. PubMed ID: 24274478
    [Abstract] [Full Text] [Related]

  • 8. Polymerization of glycidyl methacrylate from the surface of cellulose nanocrystals for the elaboration of PLA-based nanocomposites.
    Le Gars M, Bras J, Salmi-Mani H, Ji M, Dragoe D, Faraj H, Domenek S, Belgacem N, Roger P.
    Carbohydr Polym; 2020 Apr 15; 234():115899. PubMed ID: 32070519
    [Abstract] [Full Text] [Related]

  • 9. Preparation, characterization and evaluation of cellulose nanocrystal/poly(lactic acid) in situ nanocomposite scaffolds for tissue engineering.
    Luo W, Cheng L, Yuan C, Wu Z, Yuan G, Hou M, Chen JY, Luo C, Li W.
    Int J Biol Macromol; 2019 Aug 01; 134():469-479. PubMed ID: 31078594
    [Abstract] [Full Text] [Related]

  • 10. Incorporation of poly(ethylene glycol) grafted cellulose nanocrystals in poly(lactic acid) electrospun nanocomposite fibers as potential scaffolds for bone tissue engineering.
    Zhang C, Salick MR, Cordie TM, Ellingham T, Dan Y, Turng LS.
    Mater Sci Eng C Mater Biol Appl; 2015 Apr 01; 49():463-471. PubMed ID: 25686973
    [Abstract] [Full Text] [Related]

  • 11. Natural Biodegradable Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Nanocomposites with Multifunctional Cellulose Nanocrystals/Graphene Oxide Hybrids for High-Performance Food Packaging.
    Li F, Yu HY, Wang YY, Zhou Y, Zhang H, Yao JM, Abdalkarim SYH, Tam KC.
    J Agric Food Chem; 2019 Oct 02; 67(39):10954-10967. PubMed ID: 31365242
    [Abstract] [Full Text] [Related]

  • 12. Thermal degradation kinetics of polylactic acid/acid fabricated cellulose nanocrystal based bionanocomposites.
    Monika, Dhar P, Katiyar V.
    Int J Biol Macromol; 2017 Nov 02; 104(Pt A):827-836. PubMed ID: 28648639
    [Abstract] [Full Text] [Related]

  • 13. Bio-nanocomposite films reinforced with cellulose nanocrystals: Rheology of film-forming solutions, transparency, water vapor barrier and tensile properties of films.
    El Miri N, Abdelouahdi K, Barakat A, Zahouily M, Fihri A, Solhy A, El Achaby M.
    Carbohydr Polym; 2015 Sep 20; 129():156-67. PubMed ID: 26050901
    [Abstract] [Full Text] [Related]

  • 14. Reinforcement effect of poly(butylene succinate) (PBS)-grafted cellulose nanocrystal on toughened PBS/polylactic acid blends.
    Zhang X, Zhang Y.
    Carbohydr Polym; 2016 Apr 20; 140():374-82. PubMed ID: 26876864
    [Abstract] [Full Text] [Related]

  • 15. Development of polylactic acid nanocomposite films reinforced with cellulose nanocrystals derived from coffee silverskin.
    Sung SH, Chang Y, Han J.
    Carbohydr Polym; 2017 Aug 01; 169():495-503. PubMed ID: 28504172
    [Abstract] [Full Text] [Related]

  • 16. Structure and Biocompatibility of Bioabsorbable Nanocomposites of Aliphatic-Aromatic Copolyester and Cellulose Nanocrystals.
    Kashani Rahimi S, Aeinehvand R, Kim K, Otaigbe JU.
    Biomacromolecules; 2017 Jul 10; 18(7):2179-2194. PubMed ID: 28616970
    [Abstract] [Full Text] [Related]

  • 17. Effect of cellulose nanocrystals (CNC) on rheological and mechanical properties and crystallization behavior of PLA/CNC nanocomposites.
    Kamal MR, Khoshkava V.
    Carbohydr Polym; 2015 Jun 05; 123():105-14. PubMed ID: 25843840
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Enhancing long-term biodegradability and UV-shielding performances of transparent polylactic acid nanocomposite films by adding cellulose nanocrystal-zinc oxide hybrids.
    Wang YY, Yu HY, Yang L, Abdalkarim SYH, Chen WL.
    Int J Biol Macromol; 2019 Dec 01; 141():893-905. PubMed ID: 31518619
    [Abstract] [Full Text] [Related]

  • 20. Making Nanocomposites of Hydrophilic and Hydrophobic Polymers Using Gas-Responsive Cellulose Nanocrystals.
    Farnia F, Fan W, Dory Y, Zhao Y.
    Macromol Rapid Commun; 2019 Jun 01; 40(12):e1900114. PubMed ID: 30968513
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 22.