These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


299 related items for PubMed ID: 27566690

  • 21. Monorhamnolipids and 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) production using Escherichia coli as a heterologous host.
    Cabrera-Valladares N, Richardson AP, Olvera C, Treviño LG, Déziel E, Lépine F, Soberón-Chávez G.
    Appl Microbiol Biotechnol; 2006 Nov; 73(1):187-94. PubMed ID: 16847602
    [Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. Genome Characterization of Pseudomonas aeruginosa KT1115, a High Di-rhamnolipid-Producing Strain with Strong Oils Metabolizing Ability.
    Liu S, Xu N, Liu H, Zhou J, Xin F, Zhang W, Qian X, Jiang M, Dong W.
    Curr Microbiol; 2020 Aug; 77(8):1890-1895. PubMed ID: 32356168
    [Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. Microbial production of rhamnolipids: opportunities, challenges and strategies.
    Chong H, Li Q.
    Microb Cell Fact; 2017 Aug 05; 16(1):137. PubMed ID: 28779757
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. Growth independent rhamnolipid production from glucose using the non-pathogenic Pseudomonas putida KT2440.
    Wittgens A, Tiso T, Arndt TT, Wenk P, Hemmerich J, Müller C, Wichmann R, Küpper B, Zwick M, Wilhelm S, Hausmann R, Syldatk C, Rosenau F, Blank LM.
    Microb Cell Fact; 2011 Oct 17; 10():80. PubMed ID: 21999513
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34. Rhamnolipids are conserved biosurfactants molecules: implications for their biotechnological potential.
    Perfumo A, Rudden M, Smyth TJ, Marchant R, Stevenson PS, Parry NJ, Banat IM.
    Appl Microbiol Biotechnol; 2013 Aug 17; 97(16):7297-306. PubMed ID: 23563913
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Pseudomonas aeruginosa PAO1 as a model for rhamnolipid production in bioreactor systems.
    Müller MM, Hörmann B, Syldatk C, Hausmann R.
    Appl Microbiol Biotechnol; 2010 Jun 17; 87(1):167-74. PubMed ID: 20217074
    [Abstract] [Full Text] [Related]

  • 38. Oxygen effects on rhamnolipids production by Pseudomonas aeruginosa.
    Zhao F, Shi R, Ma F, Han S, Zhang Y.
    Microb Cell Fact; 2018 Mar 09; 17(1):39. PubMed ID: 29523151
    [Abstract] [Full Text] [Related]

  • 39. Designer rhamnolipids by reduction of congener diversity: production and characterization.
    Tiso T, Zauter R, Tulke H, Leuchtle B, Li WJ, Behrens B, Wittgens A, Rosenau F, Hayen H, Blank LM.
    Microb Cell Fact; 2017 Dec 14; 16(1):225. PubMed ID: 29241456
    [Abstract] [Full Text] [Related]

  • 40. Structural and physiochemical characterization of rhamnolipids produced by Acinetobacter calcoaceticus, Enterobacter asburiae and Pseudomonas aeruginosa in single strain and mixed cultures.
    Hošková M, Ježdík R, Schreiberová O, Chudoba J, Šír M, Čejková A, Masák J, Jirků V, Řezanka T.
    J Biotechnol; 2015 Jan 10; 193():45-51. PubMed ID: 25433178
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 15.