These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


365 related items for PubMed ID: 27570223

  • 1. 13C-metabolic flux analysis for mevalonate-producing strain of Escherichia coli.
    Wada K, Toya Y, Banno S, Yoshikawa K, Matsuda F, Shimizu H.
    J Biosci Bioeng; 2017 Feb; 123(2):177-182. PubMed ID: 27570223
    [Abstract] [Full Text] [Related]

  • 2. Effect of precise control of flux ratio between the glycolytic pathways on mevalonate production in Escherichia coli.
    Kamata K, Toya Y, Shimizu H.
    Biotechnol Bioeng; 2019 May; 116(5):1080-1088. PubMed ID: 30636280
    [Abstract] [Full Text] [Related]

  • 3. Metabolic engineering of mevalonate-producing Escherichia coli strains based on thermodynamic analysis.
    Nagai H, Masuda A, Toya Y, Matsuda F, Shimizu H.
    Metab Eng; 2018 May; 47():1-9. PubMed ID: 29499375
    [Abstract] [Full Text] [Related]

  • 4. Metabolic impact of nutrient starvation in mevalonate-producing Escherichia coli.
    Masuda A, Toya Y, Shimizu H.
    Bioresour Technol; 2017 Dec; 245(Pt B):1634-1640. PubMed ID: 28501379
    [Abstract] [Full Text] [Related]

  • 5. Metabolic engineering of isopropyl alcohol-producing Escherichia coli strains with 13 C-metabolic flux analysis.
    Okahashi N, Matsuda F, Yoshikawa K, Shirai T, Matsumoto Y, Wada M, Shimizu H.
    Biotechnol Bioeng; 2017 Dec; 114(12):2782-2793. PubMed ID: 28755490
    [Abstract] [Full Text] [Related]

  • 6. Fine tuning the glycolytic flux ratio of EP-bifido pathway for mevalonate production by enhancing glucose-6-phosphate dehydrogenase (Zwf) and CRISPRi suppressing 6-phosphofructose kinase (PfkA) in Escherichia coli.
    Li Y, Xian H, Xu Y, Zhu Y, Sun Z, Wang Q, Qi Q.
    Microb Cell Fact; 2021 Feb 02; 20(1):32. PubMed ID: 33531004
    [Abstract] [Full Text] [Related]

  • 7. High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli.
    Meng J, Wang B, Liu D, Chen T, Wang Z, Zhao X.
    Microb Cell Fact; 2016 Aug 12; 15(1):141. PubMed ID: 27520031
    [Abstract] [Full Text] [Related]

  • 8. Engineering and manipulation of a mevalonate pathway in Escherichia coli for isoprene production.
    Liu CL, Bi HR, Bai Z, Fan LH, Tan TW.
    Appl Microbiol Biotechnol; 2019 Jan 12; 103(1):239-250. PubMed ID: 30374674
    [Abstract] [Full Text] [Related]

  • 9. Combinatorial expression of bacterial whole mevalonate pathway for the production of beta-carotene in E. coli.
    Yoon SH, Lee SH, Das A, Ryu HK, Jang HJ, Kim JY, Oh DK, Keasling JD, Kim SW.
    J Biotechnol; 2009 Mar 25; 140(3-4):218-26. PubMed ID: 19428716
    [Abstract] [Full Text] [Related]

  • 10. Central metabolic responses to the overproduction of fatty acids in Escherichia coli based on 13C-metabolic flux analysis.
    He L, Xiao Y, Gebreselassie N, Zhang F, Antoniewiez MR, Tang YJ, Peng L.
    Biotechnol Bioeng; 2014 Mar 25; 111(3):575-85. PubMed ID: 24122357
    [Abstract] [Full Text] [Related]

  • 11. Synergy between methylerythritol phosphate pathway and mevalonate pathway for isoprene production in Escherichia coli.
    Yang C, Gao X, Jiang Y, Sun B, Gao F, Yang S.
    Metab Eng; 2016 Sep 25; 37():79-91. PubMed ID: 27174717
    [Abstract] [Full Text] [Related]

  • 12. Reassessing acetyl-CoA supply and NADPH availability for mevalonate biosynthesis from glycerol in Escherichia coli.
    Wang Y, Zhou S, Li R, Liu Q, Shao X, Zhu L, Kang MK, Wei G, Kim SW, Wang C.
    Biotechnol Bioeng; 2022 Oct 25; 119(10):2868-2877. PubMed ID: 35781874
    [Abstract] [Full Text] [Related]

  • 13. Metabolic engineering of E. coli for improving mevalonate production to promote NADPH regeneration and enhance acetyl-CoA supply.
    Satowa D, Fujiwara R, Uchio S, Nakano M, Otomo C, Hirata Y, Matsumoto T, Noda S, Tanaka T, Kondo A.
    Biotechnol Bioeng; 2020 Jul 25; 117(7):2153-2164. PubMed ID: 32255505
    [Abstract] [Full Text] [Related]

  • 14. Engineering an in vivo EP-bifido pathway in Escherichia coli for high-yield acetyl-CoA generation with low CO2 emission.
    Wang Q, Xu J, Sun Z, Luan Y, Li Y, Wang J, Liang Q, Qi Q.
    Metab Eng; 2019 Jan 25; 51():79-87. PubMed ID: 30102971
    [Abstract] [Full Text] [Related]

  • 15. Production of mevalonate by a metabolically-engineered Escherichia coli.
    Tabata K, Hashimoto S.
    Biotechnol Lett; 2004 Oct 25; 26(19):1487-91. PubMed ID: 15604784
    [Abstract] [Full Text] [Related]

  • 16. ¹³C-based metabolic flux analysis of Saccharomyces cerevisiae with a reduced Crabtree effect.
    Kajihata S, Matsuda F, Yoshimi M, Hayakawa K, Furusawa C, Kanda A, Shimizu H.
    J Biosci Bioeng; 2015 Aug 25; 120(2):140-4. PubMed ID: 25634548
    [Abstract] [Full Text] [Related]

  • 17. Improving the production of isoprene and 1,3-propanediol by metabolically engineered Escherichia coli through recycling redox cofactor between the dual pathways.
    Guo J, Cao Y, Liu H, Zhang R, Xian M, Liu H.
    Appl Microbiol Biotechnol; 2019 Mar 25; 103(6):2597-2608. PubMed ID: 30719552
    [Abstract] [Full Text] [Related]

  • 18. [Perillyl alcohol production by engineered heterologous mevalonate pathway in Escherichia coli].
    Qin Z, Zhang R, Yu J.
    Sheng Wu Gong Cheng Xue Bao; 2018 May 25; 34(5):722-730. PubMed ID: 29893080
    [Abstract] [Full Text] [Related]

  • 19. Metabolic flux of the oxidative pentose phosphate pathway under low light conditions in Synechocystis sp. PCC 6803.
    Ueda K, Nakajima T, Yoshikawa K, Toya Y, Matsuda F, Shimizu H.
    J Biosci Bioeng; 2018 Jul 25; 126(1):38-43. PubMed ID: 29499995
    [Abstract] [Full Text] [Related]

  • 20. Biosynthesis of β-carotene in engineered E. coli using the MEP and MVA pathways.
    Yang J, Guo L.
    Microb Cell Fact; 2014 Nov 18; 13():160. PubMed ID: 25403509
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.