These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
1085 related items for PubMed ID: 27576338
1. Robust, active tumor-targeting and fast bioresponsive anticancer nanotherapeutics based on natural endogenous materials. Sun B, Deng C, Meng F, Zhang J, Zhong Z. Acta Biomater; 2016 Nov; 45():223-233. PubMed ID: 27576338 [Abstract] [Full Text] [Related]
3. Targeted glioma chemotherapy by cyclic RGD peptide-functionalized reversibly core-crosslinked multifunctional poly(ethylene glycol)-b-poly(ε-caprolactone) micelles. Fang Y, Jiang Y, Zou Y, Meng F, Zhang J, Deng C, Sun H, Zhong Z. Acta Biomater; 2017 Mar 01; 50():396-406. PubMed ID: 28065871 [Abstract] [Full Text] [Related]
4. Self-crosslinkable and intracellularly decrosslinkable biodegradable micellar nanoparticles: A robust, simple and multifunctional nanoplatform for high-efficiency targeted cancer chemotherapy. Zou Y, Fang Y, Meng H, Meng F, Deng C, Zhang J, Zhong Z. J Control Release; 2016 Dec 28; 244(Pt B):326-335. PubMed ID: 27245309 [Abstract] [Full Text] [Related]
6. Dual pH-responsive multifunctional nanoparticles for targeted treatment of breast cancer by combining immunotherapy and chemotherapy. Liu Y, Qiao L, Zhang S, Wan G, Chen B, Zhou P, Zhang N, Wang Y. Acta Biomater; 2018 Jan 15; 66():310-324. PubMed ID: 29129789 [Abstract] [Full Text] [Related]
7. A glutathione-responsive sulfur dioxide polymer prodrug as a nanocarrier for combating drug-resistance in cancer chemotherapy. Shen W, Liu W, Yang H, Zhang P, Xiao C, Chen X. Biomaterials; 2018 Sep 15; 178():706-719. PubMed ID: 29433753 [Abstract] [Full Text] [Related]
8. Hyaluronic acid-shelled acid-activatable paclitaxel prodrug micelles effectively target and treat CD44-overexpressing human breast tumor xenografts in vivo. Zhong Y, Goltsche K, Cheng L, Xie F, Meng F, Deng C, Zhong Z, Haag R. Biomaterials; 2016 Apr 15; 84():250-261. PubMed ID: 26851390 [Abstract] [Full Text] [Related]
9. pH-Responsive chimaeric pepsomes based on asymmetric poly(ethylene glycol)-b-poly(l-leucine)-b-poly(l-glutamic acid) triblock copolymer for efficient loading and active intracellular delivery of doxorubicin hydrochloride. Chen P, Qiu M, Deng C, Meng F, Zhang J, Cheng R, Zhong Z. Biomacromolecules; 2015 Apr 13; 16(4):1322-30. PubMed ID: 25759951 [Abstract] [Full Text] [Related]
10. Hyaluronic acid-capped compact silica-supported mesoporous titania nanoparticles for ligand-directed delivery of doxorubicin. Gupta B, Poudel BK, Ruttala HB, Regmi S, Pathak S, Gautam M, Jin SG, Jeong JH, Choi HG, Ku SK, Yong CS, Kim JO. Acta Biomater; 2018 Oct 15; 80():364-377. PubMed ID: 30201431 [Abstract] [Full Text] [Related]
11. Lipoic acid-derived cross-linked liposomes for reduction-responsive delivery of anticancer drug. Ling L, Ismail M, Du Y, Yao C, Li X. Int J Pharm; 2019 Apr 05; 560():246-260. PubMed ID: 30769133 [Abstract] [Full Text] [Related]
12. Robust, tumor-homing and redox-sensitive polymersomal doxorubicin: A superior alternative to Doxil and Caelyx? Zou Y, Meng F, Deng C, Zhong Z. J Control Release; 2016 Oct 10; 239():149-58. PubMed ID: 27569664 [Abstract] [Full Text] [Related]
13. A co-delivery system based on paclitaxel grafted mPEG-b-PLG loaded with doxorubicin: preparation, in vitro and in vivo evaluation. Li Q, Lv S, Tang Z, Liu M, Zhang D, Yang Y, Chen X. Int J Pharm; 2014 Aug 25; 471(1-2):412-20. PubMed ID: 24905776 [Abstract] [Full Text] [Related]
14. Doxorubicin-loaded amphiphilic polypeptide-based nanoparticles as an efficient drug delivery system for cancer therapy. Lv S, Li M, Tang Z, Song W, Sun H, Liu H, Chen X. Acta Biomater; 2013 Dec 25; 9(12):9330-42. PubMed ID: 23958784 [Abstract] [Full Text] [Related]
15. Dual-responsive mPEG-PLGA-PGlu hybrid-core nanoparticles with a high drug loading to reverse the multidrug resistance of breast cancer: an in vitro and in vivo evaluation. Xu H, Yang D, Cai C, Gou J, Zhang Y, Wang L, Zhong H, Tang X. Acta Biomater; 2015 Apr 25; 16():156-68. PubMed ID: 25662165 [Abstract] [Full Text] [Related]
16. Synergistic breast tumor cell killing achieved by intracellular co-delivery of doxorubicin and disulfiram via core-shell-corona nanoparticles. Tao X, Gou J, Zhang Q, Tan X, Ren T, Yao Q, Tian B, Kou L, Zhang L, Tang X. Biomater Sci; 2018 Jun 25; 6(7):1869-1881. PubMed ID: 29808221 [Abstract] [Full Text] [Related]
17. Lipopepsomes: A novel and robust family of nano-vesicles capable of highly efficient encapsulation and tumor-targeted delivery of doxorubicin hydrochloride in vivo. Qiu M, Sun H, Meng F, Cheng R, Zhang J, Deng C, Zhong Z. J Control Release; 2018 Feb 28; 272():107-113. PubMed ID: 29355618 [Abstract] [Full Text] [Related]
18. Improving breast cancer therapy using doxorubicin loaded solid lipid nanoparticles: Synthesis of a novel arginine-glycine-aspartic tripeptide conjugated, pH sensitive lipid and evaluation of the nanomedicine in vitro and in vivo. Zheng G, Zheng M, Yang B, Fu H, Li Y. Biomed Pharmacother; 2019 Aug 28; 116():109006. PubMed ID: 31152925 [Abstract] [Full Text] [Related]
19. Delivery of mitochondriotropic doxorubicin derivatives using self-assembling hyaluronic acid nanocarriers in doxorubicin-resistant breast cancer. Liu HN, Guo NN, Guo WW, Huang-Fu MY, Vakili MR, Chen JJ, Xu WH, Wei QC, Han M, Lavasanifar A, Gao JQ. Acta Pharmacol Sin; 2018 Oct 28; 39(10):1681-1692. PubMed ID: 29849132 [Abstract] [Full Text] [Related]
20. EGFR-targeted multifunctional polymersomal doxorubicin induces selective and potent suppression of orthotopic human liver cancer in vivo. Fang Y, Yang W, Cheng L, Meng F, Zhang J, Zhong Z. Acta Biomater; 2017 Dec 28; 64():323-333. PubMed ID: 29030307 [Abstract] [Full Text] [Related] Page: [Next] [New Search]