These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


125 related items for PubMed ID: 2758022

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22. Effect of a high sulfur diet on rumen microbial activity and rumen thiamine status in sheep receiving a semi-synthetic, thiamine-free diet.
    Alves de Oliveira L, Jean-Blain C, Dal Corso V, Bénard V, Durix A, Komisarczuk-Bony S.
    Reprod Nutr Dev; 1996; 36(1):31-42. PubMed ID: 8881590
    [Abstract] [Full Text] [Related]

  • 23. Volatile fatty acid metabolism in sheep. 1. Average daily volatile fatty acid production in the rumen of sheep fed lucerne hay.
    Van Der Walt JG, Briel BJ.
    Onderstepoort J Vet Res; 1976 Mar; 43(1):11-21. PubMed ID: 940663
    [Abstract] [Full Text] [Related]

  • 24. Effect of different levels of phosphorus on rumen microbial fermentation and synthesis determined using a continuous culture technique.
    Komisarczuk S, Merry RJ, McAllan AB.
    Br J Nutr; 1987 Mar; 57(2):279-90. PubMed ID: 3567138
    [Abstract] [Full Text] [Related]

  • 25. Osmotic pressure, water kinetics and volatile fatty acid absorption in the rumen of sheep sustained by intragastric infusions.
    López S, Hovell FD, MacLeod NA.
    Br J Nutr; 1994 Feb; 71(2):153-68. PubMed ID: 8142328
    [Abstract] [Full Text] [Related]

  • 26. Effect of sole or combined administration of nitrate and 3-nitro-1-propionic acid on fermentation and Salmonella survivability in alfalfa-fed rumen cultures in vitro.
    Correa AC, Trachsel J, Allen HK, Corral-Luna A, Gutierrez-Bañuelos H, Ochoa-Garcia PA, Ruiz-Barrera O, Hume ME, Callaway TR, Harvey RB, Beier RC, Anderson RC, Nisbet DJ.
    Bioresour Technol; 2017 Apr; 229():69-77. PubMed ID: 28107724
    [Abstract] [Full Text] [Related]

  • 27. Suppression of nitrate reduction by sulphur.
    Takahashi J.
    Br J Nutr; 1990 May; 63(3):670-1. PubMed ID: 2383541
    [No Abstract] [Full Text] [Related]

  • 28. Effects of nitro compounds and feedstuffs on in vitro methane production in chicken cecal contents and rumen fluid.
    Saengkerdsub S, Kim WK, Anderson RC, Nisbet DJ, Ricke SC.
    Anaerobe; 2006 Apr; 12(2):85-92. PubMed ID: 16701620
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. Effect of dietary nitrate level on enteric methane production, hydrogen emission, rumen fermentation, and nutrient digestibility in dairy cows.
    Olijhoek DW, Hellwing ALF, Brask M, Weisbjerg MR, Højberg O, Larsen MK, Dijkstra J, Erlandsen EJ, Lund P.
    J Dairy Sci; 2016 Aug; 99(8):6191-6205. PubMed ID: 27236758
    [Abstract] [Full Text] [Related]

  • 31. Interaction of organic carbon, reduced sulphur and nitrate in anaerobic baffled reactor for fresh leachate treatment.
    Yin Z, Xie L, Khanal SK, Zhou Q.
    Environ Technol; 2016 Aug; 37(9):1110-21. PubMed ID: 26495763
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. Methane formation in faunated and ciliate-free cattle and its relationship with rumen volatile fatty acid proportions.
    Whitelaw FG, Eadie JM, Bruce LA, Shand WJ.
    Br J Nutr; 1984 Sep; 52(2):261-75. PubMed ID: 6433970
    [Abstract] [Full Text] [Related]

  • 34. Long-term effect of linseed plus nitrate fed to dairy cows on enteric methane emission and nitrate and nitrite residuals in milk.
    Guyader J, Doreau M, Morgavi DP, Gérard C, Loncke C, Martin C.
    Animal; 2016 Jul; 10(7):1173-81. PubMed ID: 27075614
    [Abstract] [Full Text] [Related]

  • 35. Effective reduction of enteric methane production by a combination of nitrate and saponin without adverse effect on feed degradability, fermentation, or bacterial and archaeal communities of the rumen.
    Patra AK, Yu Z.
    Bioresour Technol; 2013 Nov; 148():352-60. PubMed ID: 24063817
    [Abstract] [Full Text] [Related]

  • 36. Emission of volatile sulphur compounds during swine manure composting: Source identification, odour mitigation and assessment.
    Gao X, Yang F, Cheng J, Xu Z, Zang B, Li G, Xie X, Luo W.
    Waste Manag; 2022 Nov; 153():129-137. PubMed ID: 36088860
    [Abstract] [Full Text] [Related]

  • 37. Effects of amino acids on the growth of an anaerobic rumen fungus Neocallimastix sp N 13.
    Onoda A, Kobayashi Y, Hoshino S.
    Reprod Nutr Dev; 1996 Nov; 36(3):311-20. PubMed ID: 8766735
    [Abstract] [Full Text] [Related]

  • 38. Effects of nitrate treatment on a mixed species, oil field microbial biofilm.
    Dunsmore B, Youldon J, Thrasher DR, Vance I.
    J Ind Microbiol Biotechnol; 2006 Jun; 33(6):454-62. PubMed ID: 16491355
    [Abstract] [Full Text] [Related]

  • 39. In vitro assessment of the factors that determine the activity of the rumen microbiota for further applications as inoculum.
    Belanche A, Palma-Hidalgo JM, Nejjam I, Serrano R, Jiménez E, Martín-García I, Yáñez-Ruiz DR.
    J Sci Food Agric; 2019 Jan 15; 99(1):163-172. PubMed ID: 29851076
    [Abstract] [Full Text] [Related]

  • 40. The use of pivalic acid as a reference substance in measurements of production of volatile fatty acids by rumen micro-organisms in vitro.
    Czerkawski JW.
    Br J Nutr; 1976 Sep 15; 36(2):311-5. PubMed ID: 952843
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 7.