These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


290 related items for PubMed ID: 27581447

  • 1. Periaqueductal Grey EP3 Receptors Facilitate Spinal Nociception in Arthritic Secondary Hypersensitivity.
    Drake RA, Leith JL, Almahasneh F, Martindale J, Wilson AW, Lumb B, Donaldson LF.
    J Neurosci; 2016 Aug 31; 36(35):9026-40. PubMed ID: 27581447
    [Abstract] [Full Text] [Related]

  • 2. Differential contributions of A- and C-nociceptors to primary and secondary inflammatory hypersensitivity in the rat.
    Hsieh MT, Donaldson LF, Lumb BM.
    Pain; 2015 Jun 31; 156(6):1074-1083. PubMed ID: 25760474
    [Abstract] [Full Text] [Related]

  • 3. Periaqueductal grey cyclooxygenase-dependent facilitation of C-nociceptive drive and encoding in dorsal horn neurons in the rat.
    Leith JL, Wilson AW, You HJ, Lumb BM, Donaldson LF.
    J Physiol; 2014 Nov 15; 592(22):5093-107. PubMed ID: 25239460
    [Abstract] [Full Text] [Related]

  • 4. Cyclooxygenase-1-derived prostaglandins in the periaqueductal gray differentially control C- versus A-fiber-evoked spinal nociception.
    Leith JL, Wilson AW, Donaldson LF, Lumb BM.
    J Neurosci; 2007 Oct 17; 27(42):11296-305. PubMed ID: 17942724
    [Abstract] [Full Text] [Related]

  • 5. Descending control of spinal nociception from the periaqueductal grey distinguishes between neurons with and without C-fibre inputs.
    Waters AJ, Lumb BM.
    Pain; 2008 Jan 17; 134(1-2):32-40. PubMed ID: 17467173
    [Abstract] [Full Text] [Related]

  • 6. Midbrain control of spinal nociception discriminates between responses evoked by myelinated and unmyelinated heat nociceptors in the rat.
    McMullan S, Lumb BM.
    Pain; 2006 Sep 17; 124(1-2):59-68. PubMed ID: 16650581
    [Abstract] [Full Text] [Related]

  • 7. Pronociception from the dorsomedial nucleus of the hypothalamus is mediated by the rostral ventromedial medulla in healthy controls but is absent in arthritic animals.
    Pinto-Ribeiro F, Amorim D, David-Pereira A, Monteiro AM, Costa P, Pertovaara A, Almeida A.
    Brain Res Bull; 2013 Oct 17; 99():100-8. PubMed ID: 24121166
    [Abstract] [Full Text] [Related]

  • 8. The degree of acute descending control of spinal nociception in an area of primary hyperalgesia is dependent on the peripheral domain of afferent input.
    Drake RA, Hulse RP, Lumb BM, Donaldson LF.
    J Physiol; 2014 Aug 15; 592(16):3611-24. PubMed ID: 24879873
    [Abstract] [Full Text] [Related]

  • 9. Roles of the periaqueductal gray in descending facilitatory and inhibitory controls of intramuscular hypertonic saline induced muscle nociception.
    Lei J, Sun T, Lumb BM, You HJ.
    Exp Neurol; 2014 Jul 15; 257():88-94. PubMed ID: 24792920
    [Abstract] [Full Text] [Related]

  • 10. Transcutaneous electrical nerve stimulation at both high and low frequencies activates ventrolateral periaqueductal grey to decrease mechanical hyperalgesia in arthritic rats.
    DeSantana JM, Da Silva LF, De Resende MA, Sluka KA.
    Neuroscience; 2009 Nov 10; 163(4):1233-41. PubMed ID: 19576962
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Divergent Modulation of Nociception by Glutamatergic and GABAergic Neuronal Subpopulations in the Periaqueductal Gray.
    Samineni VK, Grajales-Reyes JG, Copits BA, O'Brien DE, Trigg SL, Gomez AM, Bruchas MR, Gereau RW.
    eNeuro; 2017 Nov 10; 4(2):. PubMed ID: 28374016
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Positive allosteric modulation of the cannabinoid type-1 receptor (CB1R) in periaqueductal gray (PAG) antagonizes anti-nociceptive and cellular effects of a mu-opioid receptor agonist in morphine-withdrawn rats.
    Datta U, Kelley LK, Middleton JW, Gilpin NW.
    Psychopharmacology (Berl); 2020 Dec 10; 237(12):3729-3739. PubMed ID: 32857187
    [Abstract] [Full Text] [Related]

  • 17. Changes in the effect of spinal prostaglandin E2 during inflammation: prostaglandin E (EP1-EP4) receptors in spinal nociceptive processing of input from the normal or inflamed knee joint.
    Bär KJ, Natura G, Telleria-Diaz A, Teschner P, Vogel R, Vasquez E, Schaible HG, Ebersberger A.
    J Neurosci; 2004 Jan 21; 24(3):642-51. PubMed ID: 14736850
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Effect of periaqueductal gray melanocortin 4 receptor in pain facilitation and glial activation in rat model of chronic constriction injury.
    Chu H, Sun J, Xu H, Niu Z, Xu M.
    Neurol Res; 2012 Nov 21; 34(9):871-88. PubMed ID: 22889616
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.