These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
787 related items for PubMed ID: 27582056
1. SAR study to find optimal cholinesterase reactivator against organophosphorous nerve agents and pesticides. Gorecki L, Korabecny J, Musilek K, Malinak D, Nepovimova E, Dolezal R, Jun D, Soukup O, Kuca K. Arch Toxicol; 2016 Dec; 90(12):2831-2859. PubMed ID: 27582056 [Abstract] [Full Text] [Related]
2. Reactivators of acetylcholinesterase inhibited by organophosphorus nerve agents. Mercey G, Verdelet T, Renou J, Kliachyna M, Baati R, Nachon F, Jean L, Renard PY. Acc Chem Res; 2012 May 15; 45(5):756-66. PubMed ID: 22360473 [Abstract] [Full Text] [Related]
3. Progress in acetylcholinesterase reactivators and in the treatment of organophosphorus intoxication: a patent review (2006-2016). Gorecki L, Korabecny J, Musilek K, Nepovimova E, Malinak D, Kucera T, Dolezal R, Jun D, Soukup O, Kuca K. Expert Opin Ther Pat; 2017 Sep 15; 27(9):971-985. PubMed ID: 28569609 [Abstract] [Full Text] [Related]
5. Rational design, synthesis, and evaluation of uncharged, "smart" bis-oxime antidotes of organophosphate-inhibited human acetylcholinesterase. Gorecki L, Gerlits O, Kong X, Cheng X, Blumenthal DK, Taylor P, Ballatore C, Kovalevsky A, Radić Z. J Biol Chem; 2020 Mar 27; 295(13):4079-4092. PubMed ID: 32019865 [Abstract] [Full Text] [Related]
6. A comprehensive evaluation of the efficacy of leading oxime therapies in guinea pigs exposed to organophosphorus chemical warfare agents or pesticides. Wilhelm CM, Snider TH, Babin MC, Jett DA, Platoff GE, Yeung DT. Toxicol Appl Pharmacol; 2014 Dec 15; 281(3):254-65. PubMed ID: 25448441 [Abstract] [Full Text] [Related]
7. Pyridinium oximes as cholinesterase reactivators. Structure-activity relationship and efficacy in the treatment of poisoning with organophosphorus compounds. Jokanović M, Prostran M. Curr Med Chem; 2009 Dec 15; 16(17):2177-88. PubMed ID: 19519385 [Abstract] [Full Text] [Related]
8. Oxime K027: novel low-toxic candidate for the universal reactivator of nerve agent- and pesticide-inhibited acetylcholinesterase. Kuca K, Musilek K, Jun D, Pohanka M, Ghosh KK, Hrabinova M. J Enzyme Inhib Med Chem; 2010 Aug 15; 25(4):509-12. PubMed ID: 20192902 [Abstract] [Full Text] [Related]
9. In silico and in vitro evaluation of two novel oximes (K378 and K727) in comparison to K-27 and pralidoxime against paraoxon-ethyl intoxication. Arshad M, Fatmi MQ, Musilek K, Hussain A, Kuca K, Petroianu G, Kalasz H, Nurulain SM. Toxicol Mech Methods; 2018 Jan 15; 28(1):62-68. PubMed ID: 28722512 [Abstract] [Full Text] [Related]
10. Reactivation of organophosphate-inhibited human AChE by combinations of obidoxime and HI 6 in vitro. Worek F, Aurbek N, Thiermann H. J Appl Toxicol; 2007 Jan 15; 27(6):582-8. PubMed ID: 17370251 [Abstract] [Full Text] [Related]
11. Probing the activity of a non-oxime reactivator for acetylcholinesterase inhibited by organophosphorus nerve agents. Cadieux CL, Wang H, Zhang Y, Koenig JA, Shih TM, McDonough J, Koh J, Cerasoli D. Chem Biol Interact; 2016 Nov 25; 259(Pt B):133-141. PubMed ID: 27062893 [Abstract] [Full Text] [Related]
12. Evaluation of high-affinity phenyltetrahydroisoquinoline aldoximes, linked through anti-triazoles, as reactivators of phosphylated cholinesterases. Maček Hrvat N, Kalisiak J, Šinko G, Radić Z, Sharpless KB, Taylor P, Kovarik Z. Toxicol Lett; 2020 Mar 15; 321():83-89. PubMed ID: 31863869 [Abstract] [Full Text] [Related]
13. From pyridinium-based to centrally active acetylcholinesterase reactivators. Korabecny J, Soukup O, Dolezal R, Spilovska K, Nepovimova E, Andrs M, Nguyen TD, Jun D, Musilek K, Kucerova-Chlupacova M, Kuca K. Mini Rev Med Chem; 2014 Mar 15; 14(3):215-21. PubMed ID: 24552265 [Abstract] [Full Text] [Related]
14. Counteracting tabun inhibition by reactivation by pyridinium aldoximes that interact with active center gorge mutants of acetylcholinesterase. Kovarik Z, Maček Hrvat N, Kalisiak J, Katalinić M, Sit RK, Zorbaz T, Radić Z, Fokin VV, Sharpless KB, Taylor P. Toxicol Appl Pharmacol; 2019 Jun 01; 372():40-46. PubMed ID: 30978400 [Abstract] [Full Text] [Related]
15. A comparison of the efficacy of HI6 and 2-PAM against soman, tabun, sarin, and VX in the rabbit. Koplovitz I, Stewart JR. Toxicol Lett; 1994 Feb 15; 70(3):269-79. PubMed ID: 8284794 [Abstract] [Full Text] [Related]
16. Structural requirements of acetylcholinesterase reactivators. Kuca K, Juna D, Musilek K. Mini Rev Med Chem; 2006 Mar 15; 6(3):269-77. PubMed ID: 16515465 [Abstract] [Full Text] [Related]
17. The estimation of oxime efficiency is affected by the experimental design of phosphylated acetylcholinesterase reactivation. Maček Hrvat N, Zorbaz T, Šinko G, Kovarik Z. Toxicol Lett; 2018 Sep 01; 293():222-228. PubMed ID: 29180286 [Abstract] [Full Text] [Related]
18. In vitro investigation of efficacy of new reactivators on OPC inhibited rat brain acetylcholinesterase. Atanasov VN, Petrova I, Dishovsky C. Chem Biol Interact; 2013 Mar 25; 203(1):139-43. PubMed ID: 23220589 [Abstract] [Full Text] [Related]
19. Currently used cholinesterase reactivators against nerve agent intoxication: comparison of their effectivity in vitro. Kuca K, Jun D, Bajgar J. Drug Chem Toxicol; 2007 Mar 25; 30(1):31-40. PubMed ID: 17364862 [Abstract] [Full Text] [Related]
20. Monooxime reactivators of acetylcholinesterase with (E)-but-2-ene linker: preparation and reactivation of tabun- and paraoxon-inhibited acetylcholinesterase. Musilek K, Holas O, Jun D, Dohnal V, Gunn-Moore F, Opletalova V, Dolezal M, Kuca K. Bioorg Med Chem; 2007 Nov 01; 15(21):6733-41. PubMed ID: 17764957 [Abstract] [Full Text] [Related] Page: [Next] [New Search]