These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1386 related items for PubMed ID: 27589408

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. High-Sensitive Assay of Nucleic Acid Using Tetrahedral DNA Probes and DNA Concatamers with a Surface-Enhanced Raman Scattering/Surface Plasmon Resonance Dual-Mode Biosensor Based on a Silver Nanorod-Covered Silver Nanohole Array.
    Song C, Jiang X, Yang Y, Zhang J, Larson S, Zhao Y, Wang L.
    ACS Appl Mater Interfaces; 2020 Jul 15; 12(28):31242-31254. PubMed ID: 32608960
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Target-triggering multiple-cycle amplification strategy for ultrasensitive detection of adenosine based on surface plasma resonance techniques.
    Yao GH, Liang RP, Yu XD, Huang CF, Zhang L, Qiu JD.
    Anal Chem; 2015 Jan 20; 87(2):929-36. PubMed ID: 25494977
    [Abstract] [Full Text] [Related]

  • 5. Graphene oxide-gold nanoparticles hybrids-based surface plasmon resonance for sensitive detection of microRNA.
    Wang Q, Li Q, Yang X, Wang K, Du S, Zhang H, Nie Y.
    Biosens Bioelectron; 2016 Mar 15; 77():1001-7. PubMed ID: 26547426
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. High sensitivity surface plasmon resonance biosensor for detection of microRNA based on gold nanoparticles-decorated molybdenum sulfide.
    Nie W, Wang Q, Yang X, Zhang H, Li Z, Gao L, Zheng Y, Liu X, Wang K.
    Anal Chim Acta; 2017 Nov 15; 993():55-62. PubMed ID: 29078955
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Enzyme-free surface plasmon resonance aptasensor for amplified detection of adenosine via target-triggering strand displacement cycle and Au nanoparticles.
    Yao GH, Liang RP, Huang CF, Zhang L, Qiu JD.
    Anal Chim Acta; 2015 Apr 29; 871():28-34. PubMed ID: 25847158
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Hybridization conditions of oligonucleotide-capped gold nanoparticles for SPR sensing of microRNA.
    Hong L, Lu M, Dinel MP, Blain P, Peng W, Gu H, Masson JF.
    Biosens Bioelectron; 2018 Jun 30; 109():230-236. PubMed ID: 29567568
    [Abstract] [Full Text] [Related]

  • 12. Boronic Acid Functionalized Au Nanoparticles for Selective MicroRNA Signal Amplification in Fiber-Optic Surface Plasmon Resonance Sensing System.
    Qian S, Lin M, Ji W, Yuan H, Zhang Y, Jing Z, Zhao J, Masson JF, Peng W.
    ACS Sens; 2018 May 25; 3(5):929-935. PubMed ID: 29741084
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Au@Ag core-shell nanoparticles for microRNA-21 determination based on duplex-specific nuclease signal amplification and surface-enhanced Raman scattering.
    Xu W, Zhao A, Zuo F, Khan R, Hussain HMJ, Chang J.
    Mikrochim Acta; 2020 Jun 12; 187(7):384. PubMed ID: 32533266
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Ultrasensitive MicroRNA Assay via Surface Plasmon Resonance Responses of Au@Ag Nanorods Etching.
    Gu Y, Song J, Li MX, Zhang TT, Zhao W, Xu JJ, Liu M, Chen HY.
    Anal Chem; 2017 Oct 03; 89(19):10585-10591. PubMed ID: 28872300
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 70.