These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


128 related items for PubMed ID: 27601719

  • 1. The Clinical Significance of Patient Specimen Transport Modality: Pneumatic Tube System Impact on Blood Gas Analytes.
    Carabini LM, Nouriel J, Milian RD, Glogovsky ER, McCarthy RJ, Handler TG, Ault ML.
    Respir Care; 2016 Oct; 61(10):1311-5. PubMed ID: 27601719
    [Abstract] [Full Text] [Related]

  • 2. Agreement between paired blood gas values in samples transported either by a pneumatic system or by human courier.
    Victor Peter J, Patole S, Joseph Fleming J, Selvakumar R, Graham PL.
    Clin Chem Lab Med; 2011 Aug; 49(8):1303-1309. PubMed ID: 21619479
    [Abstract] [Full Text] [Related]

  • 3. Comparison of pneumatic tube system with manual transport for routine chemistry, hematology, coagulation and blood gas tests.
    Pupek A, Matthewson B, Whitman E, Fullarton R, Chen Y.
    Clin Chem Lab Med; 2017 Aug 28; 55(10):1537-1544. PubMed ID: 28432841
    [Abstract] [Full Text] [Related]

  • 4. Evaluation of a fiberoptic blood gas monitor in neonates with congenital heart disease.
    Raake JL, Taeed R, Manning P, Pearl J, Schwartz SM, Nelson DP.
    Respir Care; 2000 Sep 28; 45(9):1105-12. PubMed ID: 10980102
    [Abstract] [Full Text] [Related]

  • 5. Blood gas analysis: POCT versus central laboratory on samples sent by a pneumatic tube system.
    Zaman Z, Demedts M.
    Clin Chim Acta; 2001 May 28; 307(1-2):101-6. PubMed ID: 11369343
    [Abstract] [Full Text] [Related]

  • 6. Influence of pneumatic tube delivery system on laboratory results.
    Makhlouf R, Fendri S, Jallouli D, Labiadh Z, Fritis L, Chaabouni K, Elleuch A, Ayadi FM.
    Ann Clin Biochem; 2024 May 28; 61(3):210-217. PubMed ID: 37921518
    [Abstract] [Full Text] [Related]

  • 7. [Transport of blood gas samples: is the pneumatic tube system safe?].
    Zanner R, Moser N, Blobner M, Luppa PB.
    Anaesthesist; 2006 Oct 28; 55(10):1099-104. PubMed ID: 16850326
    [Abstract] [Full Text] [Related]

  • 8. Evaluation of a transcutaneous blood gas monitoring system in critically ill dogs.
    Holowaychuk MK, Fujita H, Bersenas AM.
    J Vet Emerg Crit Care (San Antonio); 2014 Oct 28; 24(5):545-53. PubMed ID: 25186166
    [Abstract] [Full Text] [Related]

  • 9. Pneumatic transport exacerbates interference of room air contamination in blood gas samples.
    Astles JR, Lubarsky D, Loun B, Sedor FA, Toffaletti JG.
    Arch Pathol Lab Med; 1996 Jul 28; 120(7):642-7. PubMed ID: 8757468
    [Abstract] [Full Text] [Related]

  • 10. Dependence of middle ear gas composition on pulmonary ventilation.
    Mover-Lev H, Levy D, Luntz M, Harell M, Ar A, Sadé J.
    Ann Otol Rhinol Laryngol; 1997 Apr 28; 106(4):314-9. PubMed ID: 9109723
    [Abstract] [Full Text] [Related]

  • 11. Accuracy and precision of three different methods to determine Pco2 (Paco2 vs. Petco2 vs. Ptcco2) during interhospital ground transport of critically ill and ventilated adults.
    Hinkelbein J, Floss F, Denz C, Krieter H.
    J Trauma; 2008 Jul 28; 65(1):10-8. PubMed ID: 18580512
    [Abstract] [Full Text] [Related]

  • 12. Continuous arterial and venous blood gas monitoring during cardiopulmonary bypass.
    Mark JB, FitzGerald D, Fenton T, Fosberg AM, Camann W, Maffeo N, Winkelman J.
    J Thorac Cardiovasc Surg; 1991 Sep 28; 102(3):431-9. PubMed ID: 1908928
    [Abstract] [Full Text] [Related]

  • 13. Clinical evaluation of the on-line Sensicath blood gas monitoring system.
    Myklejord DJ, Pritzker MR, Nicoloff DM, Emery AM, Emery RW.
    Heart Surg Forum; 1998 Sep 28; 1(1):60-4. PubMed ID: 11276442
    [Abstract] [Full Text] [Related]

  • 14. Experiences with continuous intra-arterial blood gas monitoring.
    Menzel M, Henze D, Soukup J, Engelbrecht K, Senderreck M, Clausen T, Radke J.
    Minerva Anestesiol; 2001 Apr 28; 67(4):325-31. PubMed ID: 11376534
    [Abstract] [Full Text] [Related]

  • 15. Point-of-care bedside gas analyzer: limited use of venous pCO2 in emergency patients.
    Ibrahim I, Ooi SB, Yiong Huak C, Sethi S.
    J Emerg Med; 2011 Aug 28; 41(2):117-23. PubMed ID: 18930370
    [Abstract] [Full Text] [Related]

  • 16. [The behavior of arterial and mixed venous oxygen and carbon dioxide partial pressure and the pH value during and following intubation apnoea. Studies on the occurrence of the Christiansen-Douglas-Haldane effect].
    Merkelbach D, Brandt L, Mertzlufft F.
    Anaesthesist; 1993 Oct 28; 42(10):691-701. PubMed ID: 8250203
    [Abstract] [Full Text] [Related]

  • 17. Studies on the physiopathology of chronic obstructive pulmonary disease in the horse. IV. Blood gas and acid-base values at rest.
    Littlejohn A, Bowles F.
    Onderstepoort J Vet Res; 1981 Mar 28; 48(1):37-45. PubMed ID: 6792580
    [Abstract] [Full Text] [Related]

  • 18. Venous vs arterial blood gases in the assessment of patients presenting with an exacerbation of chronic obstructive pulmonary disease.
    McCanny P, Bennett K, Staunton P, McMahon G.
    Am J Emerg Med; 2012 Jul 28; 30(6):896-900. PubMed ID: 21908141
    [Abstract] [Full Text] [Related]

  • 19. Effects of Pneumatic Tube Transport on Blood Gas and Supplemental Analytes.
    Jensen PR, Aramaki RL, Mannebach SC, Markewitz BA.
    Respir Care; 2021 Oct 28; 66(10):1567-1571. PubMed ID: 33688092
    [Abstract] [Full Text] [Related]

  • 20. Evaluation of a soft-handling computerized pneumatic tube specimen delivery system. Effects on analytical results and turnaround time.
    Keshgegian AA, Bull GE.
    Am J Clin Pathol; 1992 Apr 28; 97(4):535-40. PubMed ID: 1553919
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.