These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


131 related items for PubMed ID: 27606377

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Hydrogenation of Carbon Dioxide to Methanol Catalyzed by Iron, Cobalt, and Manganese Cyclopentadienone Complexes: Mechanistic Insights and Computational Design.
    Ge H, Chen X, Yang X.
    Chemistry; 2017 Jul 03; 23(37):8850-8856. PubMed ID: 28409860
    [Abstract] [Full Text] [Related]

  • 3. Computational Design of Iron Diphosphine Complexes with Pendant Amines for Hydrogenation of CO2 to Methanol: A Mimic of [NiFe] Hydrogenase.
    Chen X, Jing Y, Yang X.
    Chemistry; 2016 Jun 20; 22(26):8897-902. PubMed ID: 27225505
    [Abstract] [Full Text] [Related]

  • 4. Computational prediction of pentadentate iron and cobalt complexes as a mimic of mono-iron hydrogenase for the hydrogenation of carbon dioxide to methanol.
    Wang W, Qiu B, Yang X.
    Dalton Trans; 2019 Jun 21; 48(23):8034-8038. PubMed ID: 31074752
    [Abstract] [Full Text] [Related]

  • 5. Computational Design of Cobalt Catalysts for Hydrogenation of Carbon Dioxide and Dehydrogenation of Formic Acid.
    Ge H, Jing Y, Yang X.
    Inorg Chem; 2016 Dec 05; 55(23):12179-12184. PubMed ID: 27934414
    [Abstract] [Full Text] [Related]

  • 6. Hydrogenation of CO2 to Methanol Catalyzed by Cp*Co Complexes: Mechanistic Insights and Ligand Design.
    Yan X, Ge H, Yang X.
    Inorg Chem; 2019 May 06; 58(9):5494-5502. PubMed ID: 31025565
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Computational Prediction of Chiral Iron Complexes for Asymmetric Transfer Hydrogenation of Pyruvic Acid to Lactic Acid.
    Wang W, Yang X.
    Molecules; 2020 Apr 20; 25(8):. PubMed ID: 32325984
    [Abstract] [Full Text] [Related]

  • 9. Bioinspired Design and Computational Prediction of Iron Complexes with Pendant Amines for the Production of Methanol from CO2 and H2.
    Chen X, Yang X.
    J Phys Chem Lett; 2016 Mar 17; 7(6):1035-41. PubMed ID: 26937854
    [Abstract] [Full Text] [Related]

  • 10. Hydrogenation of CO2 to methanol catalyzed by a manganese pincer complex: insights into the mechanism and solvent effect.
    Zhang L, Pu M, Lei M.
    Dalton Trans; 2021 Jun 01; 50(21):7348-7355. PubMed ID: 33960356
    [Abstract] [Full Text] [Related]

  • 11. Bio-inspired computational design of iron catalysts for the hydrogenation of carbon dioxide.
    Yang X.
    Chem Commun (Camb); 2015 Aug 25; 51(66):13098-101. PubMed ID: 26186244
    [Abstract] [Full Text] [Related]

  • 12. Iron/Brønsted Acid Catalyzed Asymmetric Hydrogenation: Mechanism and Selectivity-Determining Interactions.
    Hopmann KH.
    Chemistry; 2015 Jul 06; 21(28):10020-30. PubMed ID: 26039958
    [Abstract] [Full Text] [Related]

  • 13. Cp*Co(III) catalysts with proton-responsive ligands for carbon dioxide hydrogenation in aqueous media.
    Badiei YM, Wang WH, Hull JF, Szalda DJ, Muckerman JT, Himeda Y, Fujita E.
    Inorg Chem; 2013 Nov 04; 52(21):12576-86. PubMed ID: 24131038
    [Abstract] [Full Text] [Related]

  • 14. Unexpected Direct Hydride Transfer Mechanism for the Hydrogenation of Ethyl Acetate to Ethanol Catalyzed by SNS Pincer Ruthenium Complexes.
    Chen X, Jing Y, Yang X.
    Chemistry; 2016 Feb 04; 22(6):1950-1957. PubMed ID: 26751717
    [Abstract] [Full Text] [Related]

  • 15. Hydricity of an Fe-H Species and Catalytic CO2 Hydrogenation.
    Fong H, Peters JC.
    Inorg Chem; 2015 Jun 01; 54(11):5124-35. PubMed ID: 25549663
    [Abstract] [Full Text] [Related]

  • 16. A theoretical study on the hydrogenation of CO2 to methanol catalyzed by ruthenium pincer complexes.
    Zhou Y, Zhao Y, Shi X, Tang Y, Yang Z, Pu M, Lei M.
    Dalton Trans; 2022 Jul 05; 51(26):10020-10028. PubMed ID: 35703402
    [Abstract] [Full Text] [Related]

  • 17. Identifying the preferential pathways of CO2 capture and hydrogenation to methanol over an Mn(I)-PNP catalyst: a computational study.
    Mandal SC, Pathak B.
    Dalton Trans; 2021 Jul 13; 50(27):9598-9609. PubMed ID: 34160489
    [Abstract] [Full Text] [Related]

  • 18. Computational Prediction of Ammonia-Borane Dehydrocoupling and Transfer Hydrogenation of Ketones and Imines Catalyzed by SCS Nickel Pincer Complexes.
    Qiu B, Wang W, Yang X.
    Front Chem; 2019 Jul 13; 7():627. PubMed ID: 31572716
    [Abstract] [Full Text] [Related]

  • 19. Control in the Rate-Determining Step Provides a Promising Strategy To Develop New Catalysts for CO2 Hydrogenation: A Local Pair Natural Orbital Coupled Cluster Theory Study.
    Mondal B, Neese F, Ye S.
    Inorg Chem; 2015 Aug 03; 54(15):7192-8. PubMed ID: 26204267
    [Abstract] [Full Text] [Related]

  • 20. Ascendancy of Nitrogen Heterocycles in the Computationally Designed Mn(I)PNN Pincer Catalysts on the Hydrogenation of Carbon Dioxide to Methanol.
    Avasare VD.
    Inorg Chem; 2022 Jan 31; 61(4):1851-1868. PubMed ID: 34714058
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.