These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
138 related items for PubMed ID: 27607921
1. Gold-Nanoparticle-Loaded Carbonate-Modified Titanium(IV) Oxide Surface: Visible-Light-Driven Formation of Hydrogen Peroxide from Oxygen. Teranishi M, Hoshino R, Naya S, Tada H. Angew Chem Int Ed Engl; 2016 Oct 04; 55(41):12773-7. PubMed ID: 27607921 [Abstract] [Full Text] [Related]
2. Visible-light-induced electron transport from small to large nanoparticles in bimodal gold nanoparticle-loaded titanium(IV) oxide. Naya S, Niwa T, Kume T, Tada H. Angew Chem Int Ed Engl; 2014 Jul 07; 53(28):7305-9. PubMed ID: 24863051 [Abstract] [Full Text] [Related]
3. Size-Dependence of the Activity of Gold Nanoparticle-Loaded Titanium(IV) Oxide Plasmonic Photocatalyst for Water Oxidation. Teranishi M, Wada M, Naya S, Tada H. Chemphyschem; 2016 Sep 19; 17(18):2813-7. PubMed ID: 27320206 [Abstract] [Full Text] [Related]
4. Rapid Removal and Mineralization of Bisphenol A by Heterosupramolecular Plasmonic Photocatalyst Consisting of Gold Nanoparticle-Loaded Titanium(IV) Oxide and Surfactant Admicelle. Naya SI, Yamauchi J, Okubo T, Tada H. Langmuir; 2017 Oct 10; 33(40):10468-10472. PubMed ID: 28915054 [Abstract] [Full Text] [Related]
5. Visible light-induced water splitting in an aqueous suspension of a plasmonic Au/TiO2 photocatalyst with metal co-catalysts. Tanaka A, Teramura K, Hosokawa S, Kominami H, Tanaka T. Chem Sci; 2017 Apr 01; 8(4):2574-2580. PubMed ID: 28553490 [Abstract] [Full Text] [Related]
6. Plasmonic enhancement of visible-light water splitting with Au-TiO2 composite aerogels. DeSario PA, Pietron JJ, DeVantier DE, Brintlinger TH, Stroud RM, Rolison DR. Nanoscale; 2013 Sep 07; 5(17):8073-83. PubMed ID: 23877169 [Abstract] [Full Text] [Related]
7. A bi-overlayer type plasmonic photocatalyst consisting of mesoporous Au/TiO2 and CuO/SnO2 films separately coated on FTO. Naya S, Kume T, Okumura N, Tada H. Phys Chem Chem Phys; 2015 Jul 21; 17(27):18004-10. PubMed ID: 26094620 [Abstract] [Full Text] [Related]
8. Rapid removal and decomposition of gaseous acetaldehyde by the thermo- and photo-catalysis of gold nanoparticle-loaded anatase titanium(IV) oxide. Nikawa T, Naya S, Tada H. J Colloid Interface Sci; 2015 Oct 15; 456():161-5. PubMed ID: 26122796 [Abstract] [Full Text] [Related]
9. Efficient plasmonic water splitting by heteroepitaxial junction-induced faceting of gold nanoparticles on an anatase titanium(IV) oxide nanoplate array electrode. Naya SI, Morita Y, Sugime H, Soejima T, Fujishima M, Tada H. Nanoscale; 2024 Jul 18; 16(28):13435-13444. PubMed ID: 38919999 [Abstract] [Full Text] [Related]
10. Crystallographic interface control of the plasmonic photocatalyst consisting of gold nanoparticles and titanium(iv) oxide. Naya SI, Akita A, Morita Y, Fujishima M, Tada H. Chem Sci; 2022 Nov 02; 13(42):12340-12347. PubMed ID: 36349270 [Abstract] [Full Text] [Related]
11. Sensitization of Pt/TiO2 Using Plasmonic Au Nanoparticles for Hydrogen Evolution under Visible-Light Irradiation. Wang F, Wong RJ, Ho JH, Jiang Y, Amal R. ACS Appl Mater Interfaces; 2017 Sep 13; 9(36):30575-30582. PubMed ID: 28829570 [Abstract] [Full Text] [Related]
12. 3D-Array of Au-TiO2 Yolk-Shell as Plasmonic Photocatalyst Boosting Multi-Scattering with Enhanced Hydrogen Evolution. Shi X, Lou Z, Zhang P, Fujitsuka M, Majima T. ACS Appl Mater Interfaces; 2016 Nov 23; 8(46):31738-31745. PubMed ID: 27933973 [Abstract] [Full Text] [Related]
13. Surface plasmon-driven water reduction: gold nanoparticle size matters. Qian K, Sweeny BC, Johnston-Peck AC, Niu W, Graham JO, DuChene JS, Qiu J, Wang YC, Engelhard MH, Su D, Stach EA, Wei WD. J Am Chem Soc; 2014 Jul 16; 136(28):9842-5. PubMed ID: 24972055 [Abstract] [Full Text] [Related]
14. Gold nanoparticles located at the interface of anatase/rutile TiO2 particles as active plasmonic photocatalysts for aerobic oxidation. Tsukamoto D, Shiraishi Y, Sugano Y, Ichikawa S, Tanaka S, Hirai T. J Am Chem Soc; 2012 Apr 11; 134(14):6309-15. PubMed ID: 22440019 [Abstract] [Full Text] [Related]
15. Plasmonic photocatalysis properties of Au nanoparticles precipitated anatase/rutile mixed TiO2 nanotubes. Wen Y, Liu B, Zeng W, Wang Y. Nanoscale; 2013 Oct 21; 5(20):9739-46. PubMed ID: 23963545 [Abstract] [Full Text] [Related]
16. Synthesis of a Gold-Inserted Iron Disilicide and Rutile Titanium Dioxide Heterojunction Photocatalyst via the Vapor-Liquid-Solid Method and Its Water-Splitting Reaction. Akiyama K, Nojima S, Ito Y, Ushiyama M, Okuda T, Irie H. ACS Omega; 2022 Nov 01; 7(43):38744-38751. PubMed ID: 36340073 [Abstract] [Full Text] [Related]
17. Generation of reactive oxygen species and charge carriers in plasmonic photocatalytic Au@TiO2 nanostructures with enhanced activity. He W, Cai J, Jiang X, Yin JJ, Meng Q. Phys Chem Chem Phys; 2018 Jun 13; 20(23):16117-16125. PubMed ID: 29855003 [Abstract] [Full Text] [Related]
18. Photoelectrochemical Hydrogen Peroxide Production from Water on a WO3 /BiVO4 Photoanode and from O2 on an Au Cathode Without External Bias. Fuku K, Miyase Y, Miseki Y, Funaki T, Gunji T, Sayama K. Chem Asian J; 2017 May 18; 12(10):1111-1119. PubMed ID: 28332317 [Abstract] [Full Text] [Related]
19. Gold(Core)-Lead(Shell) Nanoparticle-Loaded Titanium(IV) Oxide Prepared by Underpotential Photodeposition: Plasmonic Water Oxidation. Negishi R, Naya SI, Kobayashi H, Tada H. Angew Chem Int Ed Engl; 2017 Aug 21; 56(35):10347-10351. PubMed ID: 28597504 [Abstract] [Full Text] [Related]
20. Graphene supported plasmonic photocatalyst for hydrogen evolution in photocatalytic water splitting. Singh GP, Shrestha KM, Nepal A, Klabunde KJ, Sorensen CM. Nanotechnology; 2014 Jul 04; 25(26):265701. PubMed ID: 24916183 [Abstract] [Full Text] [Related] Page: [Next] [New Search]