These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Ji Luo Elucidates the CRISPR Gene Editing Technology, and How It May Affect Cancer Therapy in the Future. Luo J. Oncology (Williston Park); 2016 Oct 15; 30(10):879. PubMed ID: 27753053 [No Abstract] [Full Text] [Related]
4. A Toolkit of CRISPR-Based Genome Editing Systems in Drosophila. Xu J, Ren X, Sun J, Wang X, Qiao HH, Xu BW, Liu LP, Ni JQ. J Genet Genomics; 2015 Apr 20; 42(4):141-9. PubMed ID: 25953352 [Abstract] [Full Text] [Related]
5. Energy biotechnology in the CRISPR-Cas9 era. Estrela R, Cate JH. Curr Opin Biotechnol; 2016 Apr 20; 38():79-84. PubMed ID: 26874259 [Abstract] [Full Text] [Related]
6. CRISPR-Cas9 Genome Editing for Treatment of Atherogenic Dyslipidemia. Chadwick AC, Musunuru K. Arterioscler Thromb Vasc Biol; 2018 Jan 20; 38(1):12-18. PubMed ID: 28838920 [Abstract] [Full Text] [Related]
8. CRISPR-Cas9 Targeting of PCSK9 in Human Hepatocytes In Vivo-Brief Report. Wang X, Raghavan A, Chen T, Qiao L, Zhang Y, Ding Q, Musunuru K. Arterioscler Thromb Vasc Biol; 2016 May 20; 36(5):783-6. PubMed ID: 26941020 [Abstract] [Full Text] [Related]
9. Genome editing: The efficient tool CRISPR-Cpf1. Mahfouz MM. Nat Plants; 2017 Mar 03; 3():17028. PubMed ID: 28260792 [No Abstract] [Full Text] [Related]
10. The CRISPR-Cas toolbox and gene editing technologies. Liu G, Lin Q, Jin S, Gao C. Mol Cell; 2022 Jan 20; 82(2):333-347. PubMed ID: 34968414 [Abstract] [Full Text] [Related]
11. Genome editing: The domestication of Cas9. Urnov F. Nature; 2016 Jan 28; 529(7587):468-9. PubMed ID: 26819037 [No Abstract] [Full Text] [Related]
12. Special Issue on the Chemical Biology of CRISPR. Weidmann AG, Choudhary A. ACS Chem Biol; 2018 Feb 16; 13(2):283-284. PubMed ID: 29448763 [No Abstract] [Full Text] [Related]
13. RNA-Targeting CRISPR-Cas Systems and Their Applications. Burmistrz M, Krakowski K, Krawczyk-Balska A. Int J Mol Sci; 2020 Feb 07; 21(3):. PubMed ID: 32046217 [Abstract] [Full Text] [Related]
14. Repurposing type I-F CRISPR-Cas system as a transcriptional activation tool in human cells. Chen Y, Liu J, Zhi S, Zheng Q, Ma W, Huang J, Liu Y, Liu D, Liang P, Songyang Z. Nat Commun; 2020 Jun 19; 11(1):3136. PubMed ID: 32561716 [Abstract] [Full Text] [Related]
15. Genome Editing in Retinal Diseases using CRISPR Technology. Yiu G. Ophthalmol Retina; 2018 Jan 19; 2(1):1-3. PubMed ID: 31047294 [No Abstract] [Full Text] [Related]
16. More specific CRISPR editing. de Souza N. Nat Methods; 2014 Jul 19; 11(7):712. PubMed ID: 25110782 [No Abstract] [Full Text] [Related]
17. A CRISPR Path to Cutting-Edge Materials. Chen M, Luo D. N Engl J Med; 2020 Jan 02; 382(1):85-88. PubMed ID: 31893521 [No Abstract] [Full Text] [Related]
18. Now on Course, CRISPR J. Newsham W. CRISPR J; 2019 Jun 02; 2():155-156. PubMed ID: 31225748 [No Abstract] [Full Text] [Related]
19. Cas9, Cpf1 and C2c1/2/3-What's next? Nakade S, Yamamoto T, Sakuma T. Bioengineered; 2017 May 04; 8(3):265-273. PubMed ID: 28140746 [Abstract] [Full Text] [Related]
20. Analysis of microsatellite instability in CRISPR/Cas9 editing mice. Huo X, Du Y, Lu J, Guo M, Li Z, Zhang S, Li X, Chen Z, Du X. Mutat Res; 2017 Mar 04; 797-799():1-6. PubMed ID: 28284774 [Abstract] [Full Text] [Related] Page: [Next] [New Search]