These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
345 related items for PubMed ID: 27617962
41. Validation of automatic wear-time detection algorithms in a free-living setting of wrist-worn and hip-worn ActiGraph GT3X. Knaier R, Höchsmann C, Infanger D, Hinrichs T, Schmidt-Trucksäss A. BMC Public Health; 2019 Feb 28; 19(1):244. PubMed ID: 30819148 [Abstract] [Full Text] [Related]
42. Feasibility and validity of the ActiGraph GT3X accelerometer in measuring physical activity of Malawian toddlers. Pulakka A, Cheung YB, Ashorn U, Penpraze V, Maleta K, Phuka JC, Ashorn P. Acta Paediatr; 2013 Dec 28; 102(12):1192-8. PubMed ID: 24102811 [Abstract] [Full Text] [Related]
43. Triaxial accelerometer output predicts oxygen uptake in adults with Down syndrome. Allred AT, Choi P, Agiovlasitis S. Disabil Rehabil; 2021 Sep 28; 43(18):2602-2609. PubMed ID: 31880164 [Abstract] [Full Text] [Related]
49. Calibration and Cross-Validation of the ActiGraph wGT3X+ Accelerometer for the Estimation of Physical Activity Intensity in Children with Intellectual Disabilities. McGarty AM, Penpraze V, Melville CA. PLoS One; 2016 Sep 28; 11(10):e0164928. PubMed ID: 27760219 [Abstract] [Full Text] [Related]
50. Validation of the GT3X ActiGraph in children and comparison with the GT1M ActiGraph. Hänggi JM, Phillips LR, Rowlands AV. J Sci Med Sport; 2013 Jan 28; 16(1):40-4. PubMed ID: 22749938 [Abstract] [Full Text] [Related]
51. Accelerometer-derived physical activity estimation in preschoolers - comparison of cut-point sets incorporating the vector magnitude vs the vertical axis. Leeger-Aschmann CS, Schmutz EA, Zysset AE, Kakebeeke TH, Messerli-Bürgy N, Stülb K, Arhab A, Meyer AH, Munsch S, Jenni OG, Puder JJ, Kriemler S. BMC Public Health; 2019 May 06; 19(1):513. PubMed ID: 31060538 [Abstract] [Full Text] [Related]
52. Estimating Physical Activity and Sedentary Behavior in a Free-Living Context: A Pragmatic Comparison of Consumer-Based Activity Trackers and ActiGraph Accelerometry. Gomersall SR, Ng N, Burton NW, Pavey TG, Gilson ND, Brown WJ. J Med Internet Res; 2016 Sep 07; 18(9):e239. PubMed ID: 27604226 [Abstract] [Full Text] [Related]
53. Comparison of Sedentary Estimates between activPAL and Hip- and Wrist-Worn ActiGraph. Koster A, Shiroma EJ, Caserotti P, Matthews CE, Chen KY, Glynn NW, Harris TB. Med Sci Sports Exerc; 2016 Aug 07; 48(8):1514-1522. PubMed ID: 27031744 [Abstract] [Full Text] [Related]
54. Cross-validation of Actigraph derived accelerometer cut-points for assessment of sedentary behaviour and physical activity in children aged 8-11 years. Duncan MJ, Eyre ELJ, Cox V, Roscoe CMP, Faghy MA, Tallis J, Dobell A. Acta Paediatr; 2020 Sep 07; 109(9):1825-1830. PubMed ID: 31984545 [Abstract] [Full Text] [Related]
56. The backwards comparability of wrist worn GENEActiv and waist worn ActiGraph accelerometer estimates of sedentary time in children. Boddy LM, Noonan RJ, Rowlands AV, Hurter L, Knowles ZR, Fairclough SJ. J Sci Med Sport; 2019 Jul 07; 22(7):814-820. PubMed ID: 30803818 [Abstract] [Full Text] [Related]
57. Defining Accelerometer Nonwear Time to Maximize Detection of Sedentary Time in Youth. Cain KL, Bonilla E, Conway TL, Schipperijn J, Geremia CM, Mignano A, Kerr J, Sallis JF. Pediatr Exerc Sci; 2018 May 01; 30(2):288-295. PubMed ID: 29276859 [Abstract] [Full Text] [Related]
58. Comparison of Compliance and Intervention Outcomes Between Hip- and Wrist-Worn Accelerometers During a Randomized Crossover Trial of an Active Video Games Intervention in Children. Howie EK, McVeigh JA, Straker LM. J Phys Act Health; 2016 Sep 01; 13(9):964-9. PubMed ID: 27172616 [Abstract] [Full Text] [Related]