These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Enhancement of Ethanol Production via Hyper Thermal Acid Hydrolysis and Co-Fermentation Using Waste Seaweed from Gwangalli Beach, Busan, Korea. Sunwoo IY, Nguyen TH, Sukwong P, Jeong GT, Kim SK. J Microbiol Biotechnol; 2018 Mar 28; 28(3):401-408. PubMed ID: 29212293 [Abstract] [Full Text] [Related]
6. Optimization study on the hydrogen peroxide pretreatment and production of bioethanol from seaweed Ulva prolifera biomass. Li Y, Cui J, Zhang G, Liu Z, Guan H, Hwang H, Aker WG, Wang P. Bioresour Technol; 2016 Aug 28; 214():144-149. PubMed ID: 27132221 [Abstract] [Full Text] [Related]
7. Bioethanol production from the macroalgae Sargassum spp. Borines MG, de Leon RL, Cuello JL. Bioresour Technol; 2013 Jun 28; 138():22-9. PubMed ID: 23612158 [Abstract] [Full Text] [Related]
9. Sequential hydrolysis of waste newspaper and bioethanol production from the hydrolysate. Wu FC, Huang SS, Shih IL. Bioresour Technol; 2014 Sep 28; 167():159-68. PubMed ID: 24980028 [Abstract] [Full Text] [Related]
10. Bioethanol production from carbohydrate-enriched residual biomass obtained after lipid extraction of Chlorella sp. KR-1. Lee OK, Oh YK, Lee EY. Bioresour Technol; 2015 Nov 28; 196():22-7. PubMed ID: 26218538 [Abstract] [Full Text] [Related]
11. Chemo-enzymatic saccharification and bioethanol fermentation of lipid-extracted residual biomass of the microalga, Dunaliella tertiolecta. Lee OK, Kim AL, Seong DH, Lee CG, Jung YT, Lee JW, Lee EY. Bioresour Technol; 2013 Mar 28; 132():197-201. PubMed ID: 23411448 [Abstract] [Full Text] [Related]
12. Two-stage hydrolysis of invasive algal feedstock for ethanol fermentation. Wang X, Liu X, Wang G. J Integr Plant Biol; 2011 Mar 28; 53(3):246-52. PubMed ID: 21205190 [Abstract] [Full Text] [Related]
13. Effects of galactose adaptation in yeast for ethanol fermentation from red seaweed, Gracilaria verrucosa. Ra CH, Kim YJ, Lee SY, Jeong GT, Kim SK. Bioprocess Biosyst Eng; 2015 Sep 28; 38(9):1715-22. PubMed ID: 25964182 [Abstract] [Full Text] [Related]
14. Comparison of Ethanol Yield Coefficients Using Saccharomyces cerevisiae, Candida lusitaniae, and Kluyveromyces marxianus Adapted to High Concentrations of Galactose with Gracilaria verrucosa as Substrate. Park Y, Sunwoo IY, Yang J, Jeong GT, Kim SK. J Microbiol Biotechnol; 2020 Jan 28; 30(6):930-936. PubMed ID: 32238769 [Abstract] [Full Text] [Related]
15. The analysis of macroalgae biomass found around Hawaii for bioethanol production. Yoza BA, Masutani EM. Environ Technol; 2013 Jan 28; 34(13-16):1859-67. PubMed ID: 24350439 [Abstract] [Full Text] [Related]
17. Particulate size of microalgal biomass affects hydrolysate properties and bioethanol concentration. Harun R, Danquah MK, Thiruvenkadam S. Biomed Res Int; 2014 Jan 28; 2014():435631. PubMed ID: 24971327 [Abstract] [Full Text] [Related]
18. Fermentation of enzymatically saccharified sunflower stalks for ethanol production and its scale up. Sharma SK, Kalra KL, Grewal HS. Bioresour Technol; 2002 Oct 28; 85(1):31-3. PubMed ID: 12146639 [Abstract] [Full Text] [Related]
19. Bioethanol production from Gracilaria verrucosa using Saccharomyces cerevisiae adapted to NaCl or galactose. Nguyen TH, Ra CH, Sunwoo I, Jeong GT, Kim SK. Bioprocess Biosyst Eng; 2017 Apr 28; 40(4):529-536. PubMed ID: 27990562 [Abstract] [Full Text] [Related]
20. Solid acid catalysts pretreatment and enzymatic hydrolysis of macroalgae cellulosic residue for the production of bioethanol. Tan IS, Lee KT. Carbohydr Polym; 2015 Jun 25; 124():311-21. PubMed ID: 25839825 [Abstract] [Full Text] [Related] Page: [Next] [New Search]