These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


234 related items for PubMed ID: 27619818

  • 21. Surface properties and chemical composition of corncob and miscanthus biochars: effects of production temperature and method.
    Budai A, Wang L, Gronli M, Strand LT, Antal MJ, Abiven S, Dieguez-Alonso A, Anca-Couce A, Rasse DP.
    J Agric Food Chem; 2014 Apr 30; 62(17):3791-9. PubMed ID: 24720814
    [Abstract] [Full Text] [Related]

  • 22. Sorption of lead by Salisbury biochar produced from British broadleaf hardwood.
    Shen Z, Jin F, Wang F, McMillan O, Al-Tabbaa A.
    Bioresour Technol; 2015 Oct 30; 193():553-6. PubMed ID: 26141669
    [Abstract] [Full Text] [Related]

  • 23. Sorption mechanisms of chlorinated hydrocarbons on biochar produced from different feedstocks: Conclusions from single- and bi-solute experiments.
    Schreiter IJ, Schmidt W, Schüth C.
    Chemosphere; 2018 Jul 30; 203():34-43. PubMed ID: 29605747
    [Abstract] [Full Text] [Related]

  • 24. [Characterization of biochar by X-ray photoelectron spectroscopy and 13C nuclear magnetic resonance].
    Xu DY, Jin J, Yan Y, Han LF, Kang MJ, Wang ZY, Zhao Y, Sun K.
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Dec 30; 34(12):3415-8. PubMed ID: 25881450
    [Abstract] [Full Text] [Related]

  • 25. Sorption of four hydrophobic organic contaminants by biochars derived from maize straw, wood dust and swine manure at different pyrolytic temperatures.
    Wang Z, Han L, Sun K, Jin J, Ro KS, Libra JA, Liu X, Xing B.
    Chemosphere; 2016 Feb 30; 144():285-91. PubMed ID: 26364218
    [Abstract] [Full Text] [Related]

  • 26. Use of chemical and physical characteristics to investigate trends in biochar feedstocks.
    Mukome FN, Zhang X, Silva LC, Six J, Parikh SJ.
    J Agric Food Chem; 2013 Mar 06; 61(9):2196-204. PubMed ID: 23343098
    [Abstract] [Full Text] [Related]

  • 27. Gasified Grass and Wood Biochars Facilitate Plant Establishment in Acid Mine Soils.
    Phillips CL, Trippe KM, Whittaker G, Griffith SM, Johnson MG, Banowetz GM.
    J Environ Qual; 2016 May 06; 45(3):1013-20. PubMed ID: 27136169
    [Abstract] [Full Text] [Related]

  • 28. Generalized two-dimensional perturbation correlation infrared spectroscopy reveals mechanisms for the development of surface charge and recalcitrance in plant-derived biochars.
    Harvey OR, Herbert BE, Kuo LJ, Louchouarn P.
    Environ Sci Technol; 2012 Oct 02; 46(19):10641-50. PubMed ID: 22950676
    [Abstract] [Full Text] [Related]

  • 29. Molecular markers of benzene polycarboxylic acids in describing biochar physiochemical properties and sorption characteristics.
    Chang Z, Tian L, Wu M, Dong X, Peng J, Pan B.
    Environ Pollut; 2018 Jun 02; 237():541-548. PubMed ID: 29524876
    [Abstract] [Full Text] [Related]

  • 30. Elaboration, characteristics and advantages of biochars for the management of contaminated soils with a specific overview on Miscanthus biochars.
    Janus A, Pelfrêne A, Heymans S, Deboffe C, Douay F, Waterlot C.
    J Environ Manage; 2015 Oct 01; 162():275-89. PubMed ID: 26265597
    [Abstract] [Full Text] [Related]

  • 31. Algal biochar--production and properties.
    Bird MI, Wurster CM, de Paula Silva PH, Bass AM, de Nys R.
    Bioresour Technol; 2011 Jan 01; 102(2):1886-91. PubMed ID: 20797850
    [Abstract] [Full Text] [Related]

  • 32. Comparative analysis of pinewood, peanut shell, and bamboo biomass derived biochars produced via hydrothermal conversion and pyrolysis.
    Huff MD, Kumar S, Lee JW.
    J Environ Manage; 2014 Dec 15; 146():303-308. PubMed ID: 25190598
    [Abstract] [Full Text] [Related]

  • 33. A case study: what is leached from mallee biochars as a function of pH?
    Lievens C, Mourant D, Hu X, Wang Y, Wu L, Rossiter A, Gunawan R, He M, Li CZ.
    Environ Monit Assess; 2018 Apr 18; 190(5):294. PubMed ID: 29671073
    [Abstract] [Full Text] [Related]

  • 34. Contributions of different biomass components to the sorption of 1,2,4-trichlorobenzene under a series of pyrolytic temperatures.
    Han L, Qian L, Yan J, Chen M.
    Chemosphere; 2016 Aug 18; 156():262-271. PubMed ID: 27179244
    [Abstract] [Full Text] [Related]

  • 35. Pore structure and environmental serves of biochars derived from different feedstocks and pyrolysis conditions.
    Lu S, Zong Y.
    Environ Sci Pollut Res Int; 2018 Oct 18; 25(30):30401-30409. PubMed ID: 30159845
    [Abstract] [Full Text] [Related]

  • 36. Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature.
    Singh BP, Cowie AL, Smernik RJ.
    Environ Sci Technol; 2012 Nov 06; 46(21):11770-8. PubMed ID: 23013285
    [Abstract] [Full Text] [Related]

  • 37. Selected dark sides of biomass-derived biochars as environmental amendments.
    Chen Z, Luo L, Xiao D, Lv J, Wen B, Ma Y, Zhang S.
    J Environ Sci (China); 2017 Apr 06; 54():13-20. PubMed ID: 28391921
    [Abstract] [Full Text] [Related]

  • 38. Properties of biomass-derived biochars: Combined effects of operating conditions and biomass types.
    Luo L, Xu C, Chen Z, Zhang S.
    Bioresour Technol; 2015 Sep 06; 192():83-9. PubMed ID: 26022969
    [Abstract] [Full Text] [Related]

  • 39. Sorption of fluorinated herbicides to plant biomass-derived biochars as a function of molecular structure.
    Sun K, Keiluweit M, Kleber M, Pan Z, Xing B.
    Bioresour Technol; 2011 Nov 06; 102(21):9897-903. PubMed ID: 21907572
    [Abstract] [Full Text] [Related]

  • 40. Characterization and quantification of electron donating capacity and its structure dependence in biochar derived from three waste biomasses.
    Zhang Y, Xu X, Cao L, Ok YS, Cao X.
    Chemosphere; 2018 Nov 06; 211():1073-1081. PubMed ID: 30223322
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 12.