These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


183 related items for PubMed ID: 2762120

  • 21. ROn-1 SINEs: a tRNA-derived, short interspersed repetitive DNA element from Oreochromis niloticus and its species-specific distribution in Old World cichlid fishes.
    Bryden LJ, Denovan-Wright EM, Wright JM.
    Mol Mar Biol Biotechnol; 1998 Mar; 7(1):48-54. PubMed ID: 9597778
    [Abstract] [Full Text] [Related]

  • 22. The nucleotide sequence of a new human repetitive DNA consists of eight tandem repeats of 66 base pairs.
    Yang R, Fristensky B, Deutch AH, Huang RC, Tan YH, Narang SA, Wu R.
    Gene; 1983 Nov; 25(1):59-66. PubMed ID: 6662363
    [Abstract] [Full Text] [Related]

  • 23. Genomic organization and evolution of the soybean SB92 satellite sequence.
    Vahedian M, Shi L, Zhu T, Okimoto R, Danna K, Keim P.
    Plant Mol Biol; 1995 Nov; 29(4):857-62. PubMed ID: 8541510
    [Abstract] [Full Text] [Related]

  • 24. The EcoRI centromeric satellite DNA of the Sparidae family (Pisces, Perciformes) contains a sequence motive common to other vertebrate centromeric satellite DNAs.
    Garrido-Ramos MA, Jamilena M, Lozano R, Ruiz Rejón C, Ruiz Rejón M.
    Cytogenet Cell Genet; 1995 Nov; 71(4):345-51. PubMed ID: 8521722
    [Abstract] [Full Text] [Related]

  • 25. Preservation of a complex satellite DNA in two species of echinoderms.
    Sainz J, Cornudella L.
    Nucleic Acids Res; 1990 Feb 25; 18(4):885-90. PubMed ID: 2315043
    [Abstract] [Full Text] [Related]

  • 26. Human beta satellite DNA: genomic organization and sequence definition of a class of highly repetitive tandem DNA.
    Waye JS, Willard HF.
    Proc Natl Acad Sci U S A; 1989 Aug 25; 86(16):6250-4. PubMed ID: 2762326
    [Abstract] [Full Text] [Related]

  • 27. Evolution of beta satellite DNA sequences: evidence for duplication-mediated repeat amplification and spreading.
    Cardone MF, Ballarati L, Ventura M, Rocchi M, Marozzi A, Ginelli E, Meneveri R.
    Mol Biol Evol; 2004 Sep 25; 21(9):1792-9. PubMed ID: 15201396
    [Abstract] [Full Text] [Related]

  • 28. Tandemly repeated DNA sequences from Xenopus laevis. I. Studies on sequence organization and variation in satellite 1 DNA (741 base-pair repeat).
    Lam BS, Carroll D.
    J Mol Biol; 1983 Apr 25; 165(4):567-85. PubMed ID: 6189999
    [Abstract] [Full Text] [Related]

  • 29. Genetic variability in a family of satellite DNAs from tilapia (Pisces: Cichlidae).
    Franck JP, Wright JM, McAndrew BJ.
    Genome; 1992 Oct 25; 35(5):719-25. PubMed ID: 1358754
    [Abstract] [Full Text] [Related]

  • 30. Sequence heterogeneity within the human alphoid repetitive DNA family.
    Devilee P, Slagboom P, Cornelisse CJ, Pearson PL.
    Nucleic Acids Res; 1986 Mar 11; 14(5):2059-73. PubMed ID: 3960717
    [Abstract] [Full Text] [Related]

  • 31. Alpha satellite DNA in neotropical primates (Platyrrhini).
    Alves G, Seuánez HN, Fanning T.
    Chromosoma; 1994 Jul 11; 103(4):262-7. PubMed ID: 7988287
    [Abstract] [Full Text] [Related]

  • 32. Direct sequencing of genomic DNA for characterization of a satellite DNA in five species of eastern Pacific abalone.
    Muchmore ME, Moy GW, Swanson WJ, Vacquier VD.
    Mol Mar Biol Biotechnol; 1998 Mar 11; 7(1):1-6. PubMed ID: 9597772
    [Abstract] [Full Text] [Related]

  • 33. Intra-specific variability and unusual organization of the repetitive units in a satellite DNA from Rana dalmatina: molecular evidence of a new mechanism of DNA repair acting on satellite DNA.
    Feliciello I, Picariello O, Chinali G.
    Gene; 2006 Nov 15; 383():81-92. PubMed ID: 16956734
    [Abstract] [Full Text] [Related]

  • 34. Sequences flanking the repeat arrays of human minisatellites: association with tandem and dispersed repeat elements.
    Armour JA, Wong Z, Wilson V, Royle NJ, Jeffreys AJ.
    Nucleic Acids Res; 1989 Jul 11; 17(13):4925-35. PubMed ID: 2762114
    [Abstract] [Full Text] [Related]

  • 35. Chromosome specificity of satellite DNAs: short- and long-range organization of a diverged dimeric subset of human alpha satellite from chromosome 3.
    Waye JS, Willard HF.
    Chromosoma; 1989 May 11; 97(6):475-80. PubMed ID: 2568244
    [Abstract] [Full Text] [Related]

  • 36. Cloning and characterization of two satellite DNAs in the low-C-value genome of the nematode Meloidogyne spp.
    Piotte C, Castagnone-Sereno P, Bongiovanni M, Dalmasso A, Abad P.
    Gene; 1994 Jan 28; 138(1-2):175-80. PubMed ID: 8125299
    [Abstract] [Full Text] [Related]

  • 37. Evolutionary turnover of two pBuM satellite DNA subfamilies in the Drosophila buzzatii species cluster (repleta group): from alpha to alpha/beta arrays.
    Kuhn GC, Sene FM.
    Gene; 2005 Apr 11; 349():77-85. PubMed ID: 15777676
    [Abstract] [Full Text] [Related]

  • 38. A tandemly repetitive DNA sequence is present at diverse locations in the genome of Ostertagia circumcincta.
    Callaghan MJ, Beh KJ.
    Gene; 1996 Oct 03; 174(2):273-9. PubMed ID: 8890746
    [Abstract] [Full Text] [Related]

  • 39. Cloning and characterization of an extremely conserved satellite DNA family from the root-knot nematode Meloidogyne arenaria.
    Castagnone-Sereno P, Leroy F, Abad P.
    Genome; 2000 Apr 03; 43(2):346-53. PubMed ID: 10791824
    [Abstract] [Full Text] [Related]

  • 40. A subtelomeric satellite DNA family isolated from the genome of the dioecious plant Silene latifolia.
    Garrido-Ramos MA, de la Herrán R, Ruiz Rejón M, Ruiz Rejón C.
    Genome; 1999 Jun 03; 42(3):442-6. PubMed ID: 10382291
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.