These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


260 related items for PubMed ID: 27627992

  • 1. Optimal chordwise stiffness profiles of self-propelled flapping fins.
    Kancharala AK, Philen MK.
    Bioinspir Biomim; 2016 Sep 15; 11(5):056016. PubMed ID: 27627992
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Passive mechanical models of fish caudal fins: effects of shape and stiffness on self-propulsion.
    Feilich KL, Lauder GV.
    Bioinspir Biomim; 2015 Apr 16; 10(3):036002. PubMed ID: 25879846
    [Abstract] [Full Text] [Related]

  • 4. Study of flexible fin and compliant joint stiffness on propulsive performance: theory and experiments.
    Kancharala AK, Philen MK.
    Bioinspir Biomim; 2014 Sep 16; 9(3):036011. PubMed ID: 24737004
    [Abstract] [Full Text] [Related]

  • 5. A dual caudal-fin miniature robotic fish with an integrated oscillation and jet propulsive mechanism.
    Liao P, Zhang S, Sun D.
    Bioinspir Biomim; 2018 Mar 27; 13(3):036007. PubMed ID: 29359705
    [Abstract] [Full Text] [Related]

  • 6. Understanding Fish Linear Acceleration Using an Undulatory Biorobotic Model with Soft Fluidic Elastomer Actuated Morphing Median Fins.
    Wen L, Ren Z, Di Santo V, Hu K, Yuan T, Wang T, Lauder GV.
    Soft Robot; 2018 Aug 27; 5(4):375-388. PubMed ID: 29634444
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Effects of stiffness distribution and spanwise deformation on the dynamics of a ray-supported caudal fin.
    Zhu Q, Bi X.
    Bioinspir Biomim; 2017 Mar 07; 12(2):026011. PubMed ID: 28140357
    [Abstract] [Full Text] [Related]

  • 9. Fish biorobotics: kinematics and hydrodynamics of self-propulsion.
    Lauder GV, Anderson EJ, Tangorra J, Madden PG.
    J Exp Biol; 2007 Aug 07; 210(Pt 16):2767-80. PubMed ID: 17690224
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Hydrodynamics of a robotic fish tail: effects of the caudal peduncle, fin ray motions and the flow speed.
    Ren Z, Yang X, Wang T, Wen L.
    Bioinspir Biomim; 2016 Feb 08; 11(1):016008. PubMed ID: 26855405
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. The relationship between pectoral fin ray stiffness and swimming behavior in Labridae: insights into design, performance and ecology.
    Aiello BR, Hardy AR, Cherian C, Olsen AM, Ahn SE, Hale ME, Westneat MW.
    J Exp Biol; 2018 Jan 09; 221(Pt 1):. PubMed ID: 29162638
    [Abstract] [Full Text] [Related]

  • 15. Fluid-structure interaction modeling on a 3D ray-strengthened caudal fin.
    Shi G, Xiao Q, Zhu Q, Liao W.
    Bioinspir Biomim; 2019 Apr 10; 14(3):036012. PubMed ID: 30870830
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Understanding undulatory locomotion in fishes using an inertia-compensated flapping foil robotic device.
    Wen L, Lauder G.
    Bioinspir Biomim; 2013 Dec 10; 8(4):046013. PubMed ID: 24263114
    [Abstract] [Full Text] [Related]

  • 18. Propulsive performance of an under-actuated robotic ribbon fin.
    Liu H, Curet OM.
    Bioinspir Biomim; 2017 Jun 02; 12(3):036015. PubMed ID: 28481218
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Evolutionary multiobjective design of a flexible caudal fin for robotic fish.
    Clark AJ, Tan X, McKinley PK.
    Bioinspir Biomim; 2015 Nov 25; 10(6):065006. PubMed ID: 26601975
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.