These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


134 related items for PubMed ID: 27639147

  • 1. Trace detection of tetrahydrocannabinol (THC) with a SERS-based capillary platform prepared by the in situ microwave synthesis of AgNPs.
    Yüksel S, Schwenke AM, Soliveri G, Ardizzone S, Weber K, Cialla-May D, Hoeppener S, Schubert US, Popp J.
    Anal Chim Acta; 2016 Oct 05; 939():93-100. PubMed ID: 27639147
    [Abstract] [Full Text] [Related]

  • 2. Trace Detection of Tetrahydrocannabinol in Body Fluid via Surface-Enhanced Raman Scattering and Principal Component Analysis.
    Sivashanmugan K, Squire K, Tan A, Zhao Y, Kraai JA, Rorrer GL, Wang AX.
    ACS Sens; 2019 Apr 26; 4(4):1109-1117. PubMed ID: 30907578
    [Abstract] [Full Text] [Related]

  • 3. Eco-friendly microwave-assisted green and rapid synthesis of well-stabilized gold and core-shell silver-gold nanoparticles.
    El-Naggar ME, Shaheen TI, Fouda MM, Hebeish AA.
    Carbohydr Polym; 2016 Jan 20; 136():1128-36. PubMed ID: 26572455
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Highly sensitive SERS detection of As3+ ions in aqueous media using glutathione functionalized silver nanoparticles.
    Li J, Chen L, Lou T, Wang Y.
    ACS Appl Mater Interfaces; 2011 Oct 20; 3(10):3936-41. PubMed ID: 21916441
    [Abstract] [Full Text] [Related]

  • 6. Facile Fabrication of a Silver Nanoparticle Immersed, Surface-Enhanced Raman Scattering Imposed Paper Platform through Successive Ionic Layer Absorption and Reaction for On-Site Bioassays.
    Kim W, Kim YH, Park HK, Choi S.
    ACS Appl Mater Interfaces; 2015 Dec 23; 7(50):27910-7. PubMed ID: 26619139
    [Abstract] [Full Text] [Related]

  • 7. Silver nanoparticle-treated filter paper as a highly sensitive surface-enhanced Raman scattering (SERS) substrate for detection of tyrosine in aqueous solution.
    Cheng ML, Tsai BC, Yang J.
    Anal Chim Acta; 2011 Dec 05; 708(1-2):89-96. PubMed ID: 22093349
    [Abstract] [Full Text] [Related]

  • 8. Capillary force-induced glue-free printing of Ag nanoparticle arrays for highly sensitive SERS substrates.
    Lee J, Seo J, Kim D, Shin S, Lee S, Mahata C, Lee HS, Min BW, Lee T.
    ACS Appl Mater Interfaces; 2014 Jun 25; 6(12):9053-60. PubMed ID: 24824186
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Nanoimprinted Patterned Pillar Substrates for Surface-Enhanced Raman Scattering Applications.
    Chen J, Li Y, Huang K, Wang P, He L, Carter KR, Nugen SR.
    ACS Appl Mater Interfaces; 2015 Oct 07; 7(39):22106-13. PubMed ID: 26402032
    [Abstract] [Full Text] [Related]

  • 12. Single nanowire on a film as an efficient SERS-active platform.
    Yoon I, Kang T, Choi W, Kim J, Yoo Y, Joo SW, Park QH, Ihee H, Kim B.
    J Am Chem Soc; 2009 Jan 21; 131(2):758-62. PubMed ID: 19099471
    [Abstract] [Full Text] [Related]

  • 13. Batch fabrication of disposable screen printed SERS arrays.
    Qu LL, Li DW, Xue JQ, Zhai WL, Fossey JS, Long YT.
    Lab Chip; 2012 Mar 07; 12(5):876-81. PubMed ID: 22173817
    [Abstract] [Full Text] [Related]

  • 14. Chitosan-coated anisotropic silver nanoparticles as a SERS substrate for single-molecule detection.
    Potara M, Baia M, Farcau C, Astilean S.
    Nanotechnology; 2012 Feb 10; 23(5):055501. PubMed ID: 22236478
    [Abstract] [Full Text] [Related]

  • 15. Surface enhanced Raman scattering (SERS) spectra of trinitrotoluene in silver colloids prepared by microwave heating method.
    Zhang C, Wang K, Han D, Pang Q.
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Mar 25; 122():387-91. PubMed ID: 24322757
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Tetrahydrocannabinol Sensing in Complex Biofluid with Portable Raman Spectrometer Using Diatomaceous SERS Substrates.
    Sivashanmugan K, Zhao Y, Wang AX.
    Biosensors (Basel); 2019 Oct 14; 9(4):. PubMed ID: 31615082
    [Abstract] [Full Text] [Related]

  • 18. A hanging plasmonic droplet: three-dimensional SERS hotspots for a highly sensitive multiplex detection of amino acids.
    Wang H, Fang J, Xu J, Wang F, Sun B, He S, Sun G, Liu H.
    Analyst; 2015 May 07; 140(9):2973-8. PubMed ID: 25799000
    [Abstract] [Full Text] [Related]

  • 19. Inhibiting Analyte Theft in Surface-Enhanced Raman Spectroscopy Substrates: Subnanomolar Quantitative Drug Detection.
    de Nijs B, Carnegie C, Szabó I, Grys DB, Chikkaraddy R, Kamp M, Barrow SJ, Readman CA, Kleemann ME, Scherman OA, Rosta E, Baumberg JJ.
    ACS Sens; 2019 Nov 22; 4(11):2988-2996. PubMed ID: 31565921
    [Abstract] [Full Text] [Related]

  • 20. Real-time analysis of diaquat dibromide monohydrate in water with a SERS-based integrated microdroplet sensor.
    Gao R, Choi N, Chang SI, Lee EK, Choo J.
    Nanoscale; 2014 Aug 07; 6(15):8781-6. PubMed ID: 24954446
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.