These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
288 related items for PubMed ID: 27643738
1. Utilization of mango kernel oil for the rhamnolipid production by Pseudomonas aeruginosa DR1 towards its application as biocontrol agent. Sathi Reddy K, Yahya Khan M, Archana K, Gopal Reddy M, Hameeda B. Bioresour Technol; 2016 Dec; 221():291-299. PubMed ID: 27643738 [Abstract] [Full Text] [Related]
2. Production and characterization of rhamnolipid using palm oil agricultural refinery waste. Radzuan MN, Banat IM, Winterburn J. Bioresour Technol; 2017 Feb; 225():99-105. PubMed ID: 27888734 [Abstract] [Full Text] [Related]
3. Production and characterization of rhamnolipid biosurfactant from waste frying coconut oil using a novel Pseudomonas aeruginosa D. George S, Jayachandran K. J Appl Microbiol; 2013 Feb; 114(2):373-83. PubMed ID: 23164038 [Abstract] [Full Text] [Related]
4. Selection and partial characterization of a Pseudomonas aeruginosa mono-rhamnolipid deficient mutant. Wild M, Caro AD, Hernández AL, Miller RM, Soberón-Chávez G. FEMS Microbiol Lett; 1997 Aug 15; 153(2):279-85. PubMed ID: 9271853 [Abstract] [Full Text] [Related]
5. Synthesis, characterization, and oil recovery application of biosurfactant produced by indigenous pseudomonas aeruginosa WJ-1 using waste vegetable oils. Xia WJ, Luo ZB, Dong HP, Yu L, Cui QF, Bi YQ. Appl Biochem Biotechnol; 2012 Mar 15; 166(5):1148-66. PubMed ID: 22198867 [Abstract] [Full Text] [Related]
6. Screening and production of rhamnolipids by Pseudomonas aeruginosa 47T2 NCIB 40044 from waste frying oils. Haba E, Espuny MJ, Busquets M, Manresa A. J Appl Microbiol; 2000 Mar 15; 88(3):379-87. PubMed ID: 10747218 [Abstract] [Full Text] [Related]
7. Oil wastes as unconventional substrates for rhamnolipid biosurfactant production by Pseudomonas aeruginosa LBI. Nitschke M, Costa SG, Haddad R, Gonçalves LA, Eberlin MN, Contiero J. Biotechnol Prog; 2005 Mar 15; 21(5):1562-6. PubMed ID: 16209563 [Abstract] [Full Text] [Related]
8. Production of rhamnolipid biosurfactant by fed-batch culture of Pseudomonas aeruginosa using glucose as a sole carbon source. Lee Y, Lee SY, Yang JW. Biosci Biotechnol Biochem; 1999 May 15; 63(5):946-7. PubMed ID: 10380638 [Abstract] [Full Text] [Related]
9. Production kinetics and tensioactive characteristics of biosurfactant from a Pseudomonas aeruginosa mutant grown on waste frying oils. Raza ZA, Khan MS, Khalid ZM, Rehman A. Biotechnol Lett; 2006 Oct 15; 28(20):1623-31. PubMed ID: 16955358 [Abstract] [Full Text] [Related]
10. Utilization of Paneer Whey Waste for Cost-Effective Production of Rhamnolipid Biosurfactant. Patowary R, Patowary K, Kalita MC, Deka S. Appl Biochem Biotechnol; 2016 Oct 15; 180(3):383-399. PubMed ID: 27142272 [Abstract] [Full Text] [Related]
11. Rice based distillers dried grains with solubles as a low cost substrate for the production of a novel rhamnolipid biosurfactant having anti-biofilm activity against Candida tropicalis. Borah SN, Sen S, Goswami L, Bora A, Pakshirajan K, Deka S. Colloids Surf B Biointerfaces; 2019 Oct 01; 182():110358. PubMed ID: 31325779 [Abstract] [Full Text] [Related]
12. Comparison of mono-rhamnolipids and di-rhamnolipids on microbial enhanced oil recovery (MEOR) applications. Rocha VAL, de Castilho LVA, de Castro RPV, Teixeira DB, Magalhães AV, Gomez JGC, Freire DMG. Biotechnol Prog; 2020 Jul 01; 36(4):e2981. PubMed ID: 32083814 [Abstract] [Full Text] [Related]
13. Bioconversion of agro-industrial by-products in rhamnolipids toward applications in enhanced oil recovery and bioremediation. Gudiña EJ, Rodrigues AI, Alves E, Domingues MR, Teixeira JA, Rodrigues LR. Bioresour Technol; 2015 Feb 01; 177():87-93. PubMed ID: 25479398 [Abstract] [Full Text] [Related]
14. Biosurfactant production by Pseudomonas aeruginosa A41 using palm oil as carbon source. Thaniyavarn J, Chongchin A, Wanitsuksombut N, Thaniyavarn S, Pinphanichakarn P, Leepipatpiboon N, Morikawa M, Kanaya S. J Gen Appl Microbiol; 2006 Aug 01; 52(4):215-22. PubMed ID: 17116970 [Abstract] [Full Text] [Related]
15. High-Yield Di-Rhamnolipid Production by Pseudomonas aeruginosa YM4 and its Potential Application in MEOR. Li Z, Zhang Y, Lin J, Wang W, Li S. Molecules; 2019 Apr 11; 24(7):. PubMed ID: 30979013 [Abstract] [Full Text] [Related]
16. Characterization of rhamnolipid produced by Pseudomonas aeruginosa isolate Bs20. Abdel-Mawgoud AM, Aboulwafa MM, Hassouna NA. Appl Biochem Biotechnol; 2009 May 11; 157(2):329-45. PubMed ID: 18584127 [Abstract] [Full Text] [Related]
17. Rhamnolipid biosurfactant production by strains of Pseudomonas aeruginosa using low-cost raw materials. Rahman KS, Rahman TJ, McClean S, Marchant R, Banat IM. Biotechnol Prog; 2002 May 11; 18(6):1277-81. PubMed ID: 12467462 [Abstract] [Full Text] [Related]
18. Surface-active properties of rhamnolipids from Pseudomonas aeruginosa GS3. Patel RM, Desai AJ. J Basic Microbiol; 1997 May 11; 37(4):281-6. PubMed ID: 9323868 [Abstract] [Full Text] [Related]
19. Structural characterization of a rhamnolipid-type biosurfactant produced by Pseudomonas aeruginosa MR01: enhancement of di-rhamnolipid proportion using gamma irradiation. Lotfabad TB, Abassi H, Ahmadkhaniha R, Roostaazad R, Masoomi F, Zahiri HS, Ahmadian G, Vali H, Noghabi KA. Colloids Surf B Biointerfaces; 2010 Dec 01; 81(2):397-405. PubMed ID: 20732795 [Abstract] [Full Text] [Related]
20. Designer rhamnolipids by reduction of congener diversity: production and characterization. Tiso T, Zauter R, Tulke H, Leuchtle B, Li WJ, Behrens B, Wittgens A, Rosenau F, Hayen H, Blank LM. Microb Cell Fact; 2017 Dec 14; 16(1):225. PubMed ID: 29241456 [Abstract] [Full Text] [Related] Page: [Next] [New Search]