These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Plant-Microbe Interaction: Mining the Impact of Native Bacillus amyloliquefaciens WS-10 on Tobacco Bacterial Wilt Disease and Rhizosphere Microbial Communities. Ahmed W, Dai Z, Zhang J, Li S, Ahmed A, Munir S, Liu Q, Tan Y, Ji G, Zhao Z. Microbiol Spectr; 2022 Aug 31; 10(4):e0147122. PubMed ID: 35913211 [Abstract] [Full Text] [Related]
25. Isolation of Ralstonia solanacearum-infecting bacteriophages from tomato fields in Chiang Mai, Thailand, and their experimental use as biocontrol agents. Bhunchoth A, Phironrit N, Leksomboon C, Chatchawankanphanich O, Kotera S, Narulita E, Kawasaki T, Fujie M, Yamada T. J Appl Microbiol; 2015 Apr 31; 118(4):1023-33. PubMed ID: 25619754 [Abstract] [Full Text] [Related]
26. An avirulent Ralstonia solanacearum strain FJAT1458 outcompetes with virulent strain and induces tomato plant resistance against bacterial wilt. Zheng X, Xiao R, Chen M, Wu H, Gao X, Wang J. Pest Manag Sci; 2022 Nov 31; 78(11):5002-5013. PubMed ID: 36053816 [Abstract] [Full Text] [Related]
28. Suppression of bacterial wilt of tomato by bioorganic fertilizer made from the antibacterial compound producing strain Bacillus amyloliquefaciens HR62. Huang J, Wei Z, Tan S, Mei X, Shen Q, Xu Y. J Agric Food Chem; 2014 Nov 05; 62(44):10708-16. PubMed ID: 25322261 [Abstract] [Full Text] [Related]
30. Comparative proteomic analysis of bacterial wilt susceptible and resistant tomato cultivars. Afroz A, Khan MR, Ahsan N, Komatsu S. Peptides; 2009 Sep 05; 30(9):1600-7. PubMed ID: 19524626 [Abstract] [Full Text] [Related]
31. Priming by rhizobacterium protects tomato plants from biotrophic and necrotrophic pathogen infections through multiple defense mechanisms. Ahn IP, Lee SW, Kim MG, Park SR, Hwang DJ, Bae SC. Mol Cells; 2011 Jul 05; 32(1):7-14. PubMed ID: 21710203 [Abstract] [Full Text] [Related]
32. Antibacterial activity against Ralstonia solanacearum of the lipopeptides secreted from the Bacillus amyloliquefaciens strain FJAT-2349. Chen MC, Wang JP, Zhu YJ, Liu B, Yang WJ, Ruan CQ. J Appl Microbiol; 2019 May 05; 126(5):1519-1529. PubMed ID: 30706640 [Abstract] [Full Text] [Related]
33. Rhizocompetence and antagonistic activity towards genetically diverse Ralstonia solanacearum strains--an improved strategy for selecting biocontrol agents. Xue QY, Ding GC, Li SM, Yang Y, Lan CZ, Guo JH, Smalla K. Appl Microbiol Biotechnol; 2013 Feb 05; 97(3):1361-71. PubMed ID: 22526784 [Abstract] [Full Text] [Related]
34. Ralstonia solanacearum Differentially Colonizes Roots of Resistant and Susceptible Tomato Plants. Caldwell D, Kim BS, Iyer-Pascuzzi AS. Phytopathology; 2017 May 05; 107(5):528-536. PubMed ID: 28112595 [Abstract] [Full Text] [Related]
35. Boosting the Biocontrol Efficacy of Bacillus amyloliquefaciens DSBA-11 through Physical and Chemical Mutagens to Control Bacterial Wilt Disease of Tomato Caused by Ralstonia solanacearum. Yadav DK, Devappa V, Kashyap AS, Kumar N, Rana VS, Sunita K, Singh D. Microorganisms; 2023 Jul 12; 11(7):. PubMed ID: 37512962 [Abstract] [Full Text] [Related]
36. Resistance against Ralstonia solanacearum in tomato depends on the methionine cycle and the γ-aminobutyric acid metabolic pathway. Wang G, Kong J, Cui D, Zhao H, Niu Y, Xu M, Jiang G, Zhao Y, Wang W. Plant J; 2019 Mar 12; 97(6):1032-1047. PubMed ID: 30480846 [Abstract] [Full Text] [Related]
38. Efficient colonization and harpins mediated enhancement in growth and biocontrol of wilt disease in tomato by Bacillus subtilis. Gao S, Wu H, Wang W, Yang Y, Xie S, Xie Y, Gao X. Lett Appl Microbiol; 2013 Dec 12; 57(6):526-33. PubMed ID: 23937425 [Abstract] [Full Text] [Related]