These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
326 related items for PubMed ID: 27650330
1. Dual regulation of cytoplasmic and mitochondrial acetyl-CoA utilization for improved isoprene production in Saccharomyces cerevisiae. Lv X, Wang F, Zhou P, Ye L, Xie W, Xu H, Yu H. Nat Commun; 2016 Sep 21; 7():12851. PubMed ID: 27650330 [Abstract] [Full Text] [Related]
2. Enhanced isoprene biosynthesis in Saccharomyces cerevisiae by engineering of the native acetyl-CoA and mevalonic acid pathways with a push-pull-restrain strategy. Lv X, Xie W, Lu W, Guo F, Gu J, Yu H, Ye L. J Biotechnol; 2014 Sep 30; 186():128-36. PubMed ID: 25016205 [Abstract] [Full Text] [Related]
3. A novel MVA-mediated pathway for isoprene production in engineered E. coli. Yang J, Nie Q, Liu H, Xian M, Liu H. BMC Biotechnol; 2016 Jan 20; 16():5. PubMed ID: 26786050 [Abstract] [Full Text] [Related]
4. Combining Gal4p-mediated expression enhancement and directed evolution of isoprene synthase to improve isoprene production in Saccharomyces cerevisiae. Wang F, Lv X, Xie W, Zhou P, Zhu Y, Yao Z, Yang C, Yang X, Ye L, Yu H. Metab Eng; 2017 Jan 20; 39():257-266. PubMed ID: 28034770 [Abstract] [Full Text] [Related]
5. Enhancing production of bio-isoprene using hybrid MVA pathway and isoprene synthase in E. coli. Yang J, Xian M, Su S, Zhao G, Nie Q, Jiang X, Zheng Y, Liu W. PLoS One; 2012 Jan 20; 7(4):e33509. PubMed ID: 22558074 [Abstract] [Full Text] [Related]
6. Enhanced Isoprene Production by Reconstruction of Metabolic Balance between Strengthened Precursor Supply and Improved Isoprene Synthase in Saccharomyces cerevisiae. Yao Z, Zhou P, Su B, Su S, Ye L, Yu H. ACS Synth Biol; 2018 Sep 21; 7(9):2308-2316. PubMed ID: 30145882 [Abstract] [Full Text] [Related]
7. Isoprene hydrocarbons production upon heterologous transformation of Saccharomyces cerevisiae. Hong SY, Zurbriggen AS, Melis A. J Appl Microbiol; 2012 Jul 21; 113(1):52-65. PubMed ID: 22519412 [Abstract] [Full Text] [Related]
17. Primary and Secondary Metabolic Effects of a Key Gene Deletion (ΔYPL062W) in Metabolically Engineered Terpenoid-Producing Saccharomyces cerevisiae. Chen Y, Wang Y, Liu M, Qu J, Yao M, Li B, Ding M, Liu H, Xiao W, Yuan Y. Appl Environ Microbiol; 2019 Apr 01; 85(7):. PubMed ID: 30683746 [Abstract] [Full Text] [Related]
18. Harnessing Yeast Peroxisomes and Cytosol Acetyl-CoA for Sesquiterpene α-Humulene Production. Zhang C, Li M, Zhao GR, Lu W. J Agric Food Chem; 2020 Feb 05; 68(5):1382-1389. PubMed ID: 31944688 [Abstract] [Full Text] [Related]
19. Engineering a Balanced Acetyl Coenzyme A Metabolism in Saccharomyces cerevisiae for Lycopene Production through Rational and Evolutionary Engineering. Su B, Lai P, Yang F, Li A, Deng MR, Zhu H. J Agric Food Chem; 2022 Apr 06; 70(13):4019-4029. PubMed ID: 35319878 [Abstract] [Full Text] [Related]
20. Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis. Cardenas J, Da Silva NA. Metab Eng; 2016 Jul 06; 36():80-89. PubMed ID: 26969250 [Abstract] [Full Text] [Related] Page: [Next] [New Search]