These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


299 related items for PubMed ID: 27652449

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Exoskeleton and End-Effector Robots for Upper and Lower Limbs Rehabilitation: Narrative Review.
    Molteni F, Gasperini G, Cannaviello G, Guanziroli E.
    PM R; 2018 Sep; 10(9 Suppl 2):S174-S188. PubMed ID: 30269804
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Rehabilitation robotics for the upper extremity: review with new directions for orthopaedic disorders.
    Hakim RM, Tunis BG, Ross MD.
    Disabil Rehabil Assist Technol; 2017 Nov; 12(8):765-771. PubMed ID: 28035841
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T, Guigon E, Roby-Brami A, Jarrassé N.
    J Neuroeng Rehabil; 2017 Jun 12; 14(1):55. PubMed ID: 28606179
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Robotic assistive and rehabilitation devices leading to motor recovery in upper limb: a systematic review.
    Khalid S, Alnajjar F, Gochoo M, Renawi A, Shimoda S.
    Disabil Rehabil Assist Technol; 2023 Jul 12; 18(5):658-672. PubMed ID: 33861684
    [Abstract] [Full Text] [Related]

  • 10. Enhancing stroke rehabilitation with whole-hand haptic rendering: development and clinical usability evaluation of a novel upper-limb rehabilitation device.
    Rätz R, Conti F, Thaler I, Müri RM, Marchal-Crespo L.
    J Neuroeng Rehabil; 2024 Sep 27; 21(1):172. PubMed ID: 39334423
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. A Review of Robotics in Neurorehabilitation: Towards an Automated Process for Upper Limb.
    Oña ED, Cano-de la Cuerda R, Sánchez-Herrera P, Balaguer C, Jardón A.
    J Healthc Eng; 2018 Sep 27; 2018():9758939. PubMed ID: 29707189
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. A learning-based agent for home neurorehabilitation.
    Lydakis A, Meng Y, Munroe C, Wu YN, Begum M.
    IEEE Int Conf Rehabil Robot; 2017 Jul 27; 2017():1233-1238. PubMed ID: 28813990
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Brain-machine interfaces in neurorehabilitation of stroke.
    Soekadar SR, Birbaumer N, Slutzky MW, Cohen LG.
    Neurobiol Dis; 2015 Nov 27; 83():172-9. PubMed ID: 25489973
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Brain-Computer Interfaces Systems for Upper and Lower Limb Rehabilitation: A Systematic Review.
    Camargo-Vargas D, Callejas-Cuervo M, Mazzoleni S.
    Sensors (Basel); 2021 Jun 24; 21(13):. PubMed ID: 34202546
    [Abstract] [Full Text] [Related]

  • 20. Emergence of virtual reality as a tool for upper limb rehabilitation: incorporation of motor control and motor learning principles.
    Levin MF, Weiss PL, Keshner EA.
    Phys Ther; 2015 Mar 24; 95(3):415-25. PubMed ID: 25212522
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.