These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
164 related items for PubMed ID: 2765504
1. Analysis of protein-mediated 3-O-methylglucose transport in rat erythrocytes: rejection of the alternating conformation carrier model for sugar transport. Helgerson AL, Carruthers A. Biochemistry; 1989 May 30; 28(11):4580-94. PubMed ID: 2765504 [Abstract] [Full Text] [Related]
2. Net sugar transport is a multistep process. Evidence for cytosolic sugar binding sites in erythrocytes. Cloherty EK, Sultzman LA, Zottola RJ, Carruthers A. Biochemistry; 1995 Nov 28; 34(47):15395-406. PubMed ID: 7492539 [Abstract] [Full Text] [Related]
3. Human erythrocyte sugar transport is incompatible with available carrier models. Cloherty EK, Heard KS, Carruthers A. Biochemistry; 1996 Aug 13; 35(32):10411-21. PubMed ID: 8756697 [Abstract] [Full Text] [Related]
4. Kinetic mechanism of chlorpromazine inhibition of erythrocyte 3-O-methylglucose transport. Owen NE, Gunn RB. Biochim Biophys Acta; 1983 Jan 05; 727(1):213-6. PubMed ID: 6824652 [Abstract] [Full Text] [Related]
5. Characterization of two independent modes of action of ATP on human erythrocyte sugar transport. Helgerson AL, Hebert DN, Naderi S, Carruthers A. Biochemistry; 1989 Jul 25; 28(15):6410-7. PubMed ID: 2506926 [Abstract] [Full Text] [Related]
6. Activation energy of the slowest step in the glucose carrier cycle: break at 23 degrees C and correlation with membrane lipid fluidity. Whitesell RR, Regen DM, Beth AH, Pelletier DK, Abumrad NA. Biochemistry; 1989 Jun 27; 28(13):5618-25. PubMed ID: 2775725 [Abstract] [Full Text] [Related]
7. Comparison of the equilibrium exchange of nucleosides and 3-O-methylglucose in human erythrocytes and of the effects of cytochalasin B, phloretin and dipyridamole on their transport. Plagemann PG, Woffendin C. Biochim Biophys Acta; 1987 May 29; 899(2):295-301. PubMed ID: 3580369 [Abstract] [Full Text] [Related]
8. Parameters for 3-O-methyl glucose transport in human erythrocytes and fit of asymmetric carrier kinetics. Baker GF, Widdas WF. J Physiol; 1988 Jan 29; 395():57-76. PubMed ID: 3411487 [Abstract] [Full Text] [Related]
9. Sugar transport in reversibly hemolyzed avian erythrocytes. Whitfield CF. Biochim Biophys Acta; 1976 Jun 04; 436(1):199-209. PubMed ID: 1276211 [Abstract] [Full Text] [Related]
10. Characterization of sugar transport in the pigeon red blood cell. Simons TJ. J Physiol; 1983 May 04; 338():477-99. PubMed ID: 6410059 [Abstract] [Full Text] [Related]
11. Sugar transport in giant barnacle muscle fibres. Carruthers A. J Physiol; 1983 Mar 04; 336():377-96. PubMed ID: 6875913 [Abstract] [Full Text] [Related]
14. Rapid substrate translocation by the multisubunit, erythroid glucose transporter requires subunit associations but not cooperative ligand binding. Coderre PE, Cloherty EK, Zottola RJ, Carruthers A. Biochemistry; 1995 Aug 01; 34(30):9762-73. PubMed ID: 7626647 [Abstract] [Full Text] [Related]
15. The role of calcium in the regulation of sugar transport in the pigeon red blood cell. Simons TJ. J Physiol; 1983 May 01; 338():501-25. PubMed ID: 6192238 [Abstract] [Full Text] [Related]
16. Inhibition of hexose transport by adenosine derivatives in human erythrocytes. May JM. J Cell Physiol; 1988 May 01; 135(2):332-8. PubMed ID: 3372599 [Abstract] [Full Text] [Related]
17. Accelerated net efflux of 3-O-methylglucose from rat adipocytes: a reevaluation. Wheeler TJ. Biochim Biophys Acta; 1994 Mar 23; 1190(2):345-54. PubMed ID: 8142435 [Abstract] [Full Text] [Related]