These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


60 related items for PubMed ID: 2765672

  • 41. Viscous flow of cytoplasm and red cell membrane: membrane recovery and tether contraction.
    Hochmuth RM, Berk DA, Wiles HC.
    Ann N Y Acad Sci; 1983; 416():207-24. PubMed ID: 6587809
    [Abstract] [Full Text] [Related]

  • 42. Characteristic recovery time of an erythrocyte from an extensional deformation.
    Lucero JC.
    J Biomech Eng; 1993 May; 115(2):206-7. PubMed ID: 8326729
    [Abstract] [Full Text] [Related]

  • 43. EFFECT OF MEAN CORPUSCULAR HEMOGLOBIN CONCENTRATION ON VISCOSITY.
    ERSLEV AJ, ATWATER J.
    J Lab Clin Med; 1963 Sep; 62():401-6. PubMed ID: 14061971
    [No Abstract] [Full Text] [Related]

  • 44.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 45.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 46. Significance of two transmembrane ion gradients for human erythrocyte volume stabilization.
    Ataullakhanov FI, Martinov MV, Shi Q, Vitvitsky VM.
    PLoS One; 2022 Sep; 17(12):e0272675. PubMed ID: 36542609
    [Abstract] [Full Text] [Related]

  • 47. Computation of the average shear-induced deformation of red blood cells as a function of osmolality.
    Clark MR.
    Blood Cells; 1989 Sep; 15(2):427-39; discussion 440-2. PubMed ID: 2765672
    [Abstract] [Full Text] [Related]

  • 48.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 49. Red blood cell deformation in shear flow. Effects of internal and external phase viscosity and of in vivo aging.
    Pfafferott C, Nash GB, Meiselman HJ.
    Biophys J; 1985 May; 47(5):695-704. PubMed ID: 4016189
    [Abstract] [Full Text] [Related]

  • 50.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 51. Analysis of factors regulating erythrocyte deformability.
    Mohandas N, Clark MR, Jacobs MS, Shohet SB.
    J Clin Invest; 1980 Sep; 66(3):563-73. PubMed ID: 6156955
    [Abstract] [Full Text] [Related]

  • 52. Computation of the average shear-induced deformation of red blood cells as a function of osmolality.
    Clark MR.
    Blood Cells; 1989 Sep; 15(2):427-39; discussion 440-2. PubMed ID: 2765672
    [Abstract] [Full Text] [Related]

  • 53. Theoretical model and experimental study of red blood cell (RBC) deformation in microchannels.
    Korin N, Bransky A, Dinnar U.
    J Biomech; 2007 Sep; 40(9):2088-95. PubMed ID: 17188279
    [Abstract] [Full Text] [Related]

  • 54. Red blood cell deformation in shear flow. Effects of internal and external phase viscosity and of in vivo aging.
    Pfafferott C, Nash GB, Meiselman HJ.
    Biophys J; 1985 May; 47(5):695-704. PubMed ID: 4016189
    [Abstract] [Full Text] [Related]

  • 55.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 56. Analysis of factors regulating erythrocyte deformability.
    Mohandas N, Clark MR, Jacobs MS, Shohet SB.
    J Clin Invest; 1980 Sep; 66(3):563-73. PubMed ID: 6156955
    [Abstract] [Full Text] [Related]

  • 57.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 58.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 59.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 60. Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers.
    Mills JP, Qie L, Dao M, Lim CT, Suresh S.
    Mech Chem Biosyst; 2004 Sep; 1(3):169-80. PubMed ID: 16783930
    [Abstract] [Full Text] [Related]


    Page: [Previous] [New Search]
    of 3.