These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
691 related items for PubMed ID: 27661447
41. Effect of iron loading on the performance and structure of Fe/ZSM-5 catalyst for the selective catalytic reduction of NO with NH3. Wang XT, Hu HP, Zhang XY, Su XX, Yang XD. Environ Sci Pollut Res Int; 2019 Jan; 26(2):1706-1715. PubMed ID: 30448951 [Abstract] [Full Text] [Related]
42. Ti3+ doped V2O5/TiO2 catalyst for efficient selective catalytic reduction of NOx with NH3. Zhao W, Zhang K, Wu L, Wang Q, Shang D, Zhong Q. J Colloid Interface Sci; 2021 Jan 01; 581(Pt A):76-83. PubMed ID: 32768736 [Abstract] [Full Text] [Related]
43. A novel co-precipitation method for preparation of Mn--Ce/TiO2 composites for NOx reduction with NH3 at low temperature. Sheng Z, Hu Y, Xue J, Wang X, Liao W. Environ Technol; 2012 Jan 01; 33(19-21):2421-8. PubMed ID: 23393985 [Abstract] [Full Text] [Related]
44. Effect of SO2 on the Selective Catalytic Reduction of NOx over V2O5-CeO2/TiO2-ZrO2 Catalysts. Zhang Y, Wu P, Zhuang K, Shen K, Wang S, Guo W. Materials (Basel); 2019 Aug 09; 12(16):. PubMed ID: 31395815 [Abstract] [Full Text] [Related]
45. Scale-Activity Relationship of MnOx-FeOy Nanocage Catalysts Derived from Prussian Blue Analogues for Low-Temperature NO Reduction: Experimental and DFT Studies. Yan L, Liu Y, Zha K, Li H, Shi L, Zhang D. ACS Appl Mater Interfaces; 2017 Jan 25; 9(3):2581-2593. PubMed ID: 28036165 [Abstract] [Full Text] [Related]
46. Enhanced catalytic activity over MIL-100(Fe) loaded ceria catalysts for the selective catalytic reduction of NOx with NH₃ at low temperature. Wang P, Sun H, Quan X, Chen S. J Hazard Mater; 2016 Jan 15; 301():512-21. PubMed ID: 26414927 [Abstract] [Full Text] [Related]
48. A study on the NH3-SCR performance and reaction mechanism of a cost-effective and environment-friendly black TiO2 catalyst. Zeng Y, Wang Y, Zhang S, Zhong Q. Phys Chem Chem Phys; 2018 Sep 12; 20(35):22744-22752. PubMed ID: 30140807 [Abstract] [Full Text] [Related]
49. Low-Medium Temperature-Selective Catalytic Reduction of NO with NH3 over a Mn/Co-MOF-74 Catalyst. Sun Z, Mi X, Luo Y, Wang S, Yuan B, Hao R, Zhao Y. ACS Omega; 2021 Dec 21; 6(50):34347-34358. PubMed ID: 34963920 [Abstract] [Full Text] [Related]
50. A comparative study of MOx (M = Mn, Co and Cu) modifications over CePO4 catalysts for selective catalytic reduction of NO with NH3. Liu C, Li F, Wu J, Hou X, Huang W, Zhang Y, Yang X. J Hazard Mater; 2019 Feb 05; 363():439-446. PubMed ID: 30340173 [Abstract] [Full Text] [Related]
51. Engineering 3D structure Mn/YTiOx nanotube catalyst with an efficient H2O and SO2 tolerance for low-temperature selective catalytic reduction of NO with NH3. Cui R, Huang X, Zhang G, Tang Z. Nanoscale; 2023 May 04; 15(17):7945-7961. PubMed ID: 37067024 [Abstract] [Full Text] [Related]
52. Morphology-Oriented ZrO2-Supported Vanadium Oxide for the NH3-SCR Process: Importance of Structural and Textural Properties. Liu S, Wang H, Wei Y, Zhang R, Royer S. ACS Appl Mater Interfaces; 2019 Jun 26; 11(25):22240-22254. PubMed ID: 31124652 [Abstract] [Full Text] [Related]
53. One-step synthesis by redox co-precipitation method for low-dimensional Me-Mn bi-metal oxides (Me=Co, Ni, Sn) as SCR DeNOx catalysts. Gao F, Yang C, Tang X, Yi H, Wang C. Environ Sci Pollut Res Int; 2022 Mar 26; 29(14):21210-21220. PubMed ID: 34755296 [Abstract] [Full Text] [Related]
54. Improvement of the activity and SO2 tolerance of Sb-modified Mn/PG catalysts for NH3-SCR at a low temperature. Zhang X, Lv S, Zhang X, Xiao K, Wu X. J Environ Sci (China); 2021 Mar 26; 101():1-15. PubMed ID: 33334506 [Abstract] [Full Text] [Related]
55. Promotional effect of Mn modification on DeNOx performance of Fe/nickel foam catalyst at low temperature. Zi Z, Zhu B, Sun Y, Fang Q, Ge T. Environ Sci Pollut Res Int; 2019 Apr 26; 26(10):10117-10126. PubMed ID: 30747322 [Abstract] [Full Text] [Related]
56. Metal-Organic Framework (MOF) Template Based Efficient Pt/ZrO2 @C Catalysts for Selective Catalytic Reduction of H2 Below 90 °C. Wang Q, Sun W, Xie T, Cao L, Yang J. Chem Asian J; 2019 Feb 01; 14(3):416-421. PubMed ID: 30570215 [Abstract] [Full Text] [Related]
57. One-pot hydrothermal synthesis of CuBi co-doped mesoporous zeolite Beta for the removal of NOx by selective catalytic reduction with ammonia. Xie Z, Zhou X, Wu H, Chen L, Zhao H, Liu Y, Pan L, Chen H. Sci Rep; 2016 Jul 22; 6():30132. PubMed ID: 27445009 [Abstract] [Full Text] [Related]
58. Understanding the high performance of an iron-antimony binary metal oxide catalyst in selective catalytic reduction of nitric oxide with ammonia and its tolerance of water/sulfur dioxide. Jia X, Liu H, Zhang Y, Chen W, Tong Q, Piao G, Sun C, Dong L. J Colloid Interface Sci; 2021 Jan 01; 581(Pt A):427-441. PubMed ID: 32777626 [Abstract] [Full Text] [Related]
60. The synthesis of CuyMnzAl1-zOx mixed oxide as a low-temperature NH3-SCR catalyst with enhanced catalytic performance. Yan Q, Chen S, Qiu L, Gao Y, O'Hare D, Wang Q. Dalton Trans; 2018 Feb 27; 47(9):2992-3004. PubMed ID: 28737813 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]