These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
236 related items for PubMed ID: 27664630
41. Determination of organophosphorus pesticides in bovine tissue by an on-line coupled matrix solid-phase dispersion-solid phase extraction-high performance liquid chromatography with diode array detection method. Gutiérrez Valencia TM, García de Llasera MP. J Chromatogr A; 2011 Sep 28; 1218(39):6869-77. PubMed ID: 21872255 [Abstract] [Full Text] [Related]
42. Multiresidue pesticide analysis of dried botanical dietary supplements using an automated dispersive SPE cleanup for QuEChERS and high-performance liquid chromatography-tandem mass spectrometry. Chen Y, Al-Taher F, Juskelis R, Wong JW, Zhang K, Hayward DG, Zweigenbaum J, Stevens J, Cappozzo J. J Agric Food Chem; 2012 Oct 10; 60(40):9991-9. PubMed ID: 22931171 [Abstract] [Full Text] [Related]
43. [Low temperature freezing followed by dispersive solid phase extraction for the determination of 104 pesticide residues in vegetable oils using ultra-performance liquid chromatography-tandem mass spectrometry]. Xu J, Wang L, Huang H, Chen J, Chen W, Xiang D. Se Pu; 2015 Mar 10; 33(3):242-9. PubMed ID: 26182465 [Abstract] [Full Text] [Related]
44. Simultaneous liquid chromatography/mass spectrometry determination of both polar and "multiresidue" pesticides in food using parallel hydrophilic interaction/reversed-phase liquid chromatography and a hybrid sample preparation approach. Robles-Molina J, Gilbert-López B, García-Reyes JF, Molina-Díaz A. J Chromatogr A; 2017 Sep 29; 1517():108-116. PubMed ID: 28847580 [Abstract] [Full Text] [Related]
45. An HPLC-DAD method for the simultaneous determination of nine β-lactam antibiotics in ewe milk. Cámara M, Gallego-Picó A, Garcinuño RM, Fernández-Hernando P, Durand-Alegría JS, Sánchez PJ. Food Chem; 2013 Nov 15; 141(2):829-34. PubMed ID: 23790854 [Abstract] [Full Text] [Related]
46. Evaluation of zirconium dioxide-based sorbents to decrease the matrix effect in avocado and almond multiresidue pesticide analysis followed by gas chromatography tandem mass spectrometry. Lozano A, Rajski Ł, Uclés S, Belmonte-Valles N, Mezcua M, Fernández-Alba AR. Talanta; 2014 Jan 15; 118():68-83. PubMed ID: 24274272 [Abstract] [Full Text] [Related]
47. Revisiting quick, easy, cheap, effective, rugged, and safe parameters for sample preparation in pesticide residue analysis of lettuce by liquid chromatography-tandem mass spectrometry. Ribeiro Begnini Konatu F, Breitkreitz MC, Sales Fontes Jardim IC. J Chromatogr A; 2017 Jan 27; 1482():11-22. PubMed ID: 28034504 [Abstract] [Full Text] [Related]
48. Quick, easy, cheap, effective, rugged, and safe sample preparation approach for pesticide residue analysis using traditional detectors in chromatography: A review. Rahman MM, Abd El-Aty AM, Kim SW, Shin SC, Shin HC, Shim JH. J Sep Sci; 2017 Jan 27; 40(1):203-212. PubMed ID: 27759332 [Abstract] [Full Text] [Related]
49. Modified QuEChERS in combination with dispersive liquid-liquid microextraction based on solidification of the floating organic droplet method for the determination of organophosphorus pesticides in milk samples. Miao XX, Liu DB, Wang YR, Yang YY, Yang XY, Gong HR. J Chromatogr Sci; 2015 Jan 27; 53(10):1813-20. PubMed ID: 26270080 [Abstract] [Full Text] [Related]
50. Multi-residue method for the determination of pesticides and pesticide metabolites in honeybees by liquid and gas chromatography coupled with tandem mass spectrometry--Honeybee poisoning incidents. Kiljanek T, Niewiadowska A, Semeniuk S, Gaweł M, Borzęcka M, Posyniak A. J Chromatogr A; 2016 Feb 26; 1435():100-14. PubMed ID: 26830634 [Abstract] [Full Text] [Related]
52. Determination of carbamates in edible vegetable oils by ultra-high performance liquid chromatography-tandem mass spectrometry using a new clean-up based on zirconia for QuEChERS methodology. Moreno-González D, Huertas-Pérez JF, García-Campaña AM, Gámiz-Gracia L. Talanta; 2014 Oct 26; 128():299-304. PubMed ID: 25059164 [Abstract] [Full Text] [Related]
54. A multi-residue method for pesticides analysis in green coffee beans using gas chromatography-negative chemical ionization mass spectrometry in selective ion monitoring mode. Pizzutti IR, de Kok A, Dickow Cardoso C, Reichert B, de Kroon M, Wind W, Weber Righi L, Caiel da Silva R. J Chromatogr A; 2012 Aug 17; 1251():16-26. PubMed ID: 22771261 [Abstract] [Full Text] [Related]
55. Validation of an efficient method for the determination of pesticide residues in fruits and vegetables using ethyl acetate for extraction. Aysal P, Ambrus A, Lehotay SJ, Cannavan A. J Environ Sci Health B; 2007 Aug 17; 42(5):481-90. PubMed ID: 17562455 [Abstract] [Full Text] [Related]
56. A multi-residue method for the determination of pesticides in tea using multi-walled carbon nanotubes as a dispersive solid phase extraction absorbent. Hou X, Lei S, Qiu S, Guo L, Yi S, Liu W. Food Chem; 2014 Jun 15; 153():121-9. PubMed ID: 24491709 [Abstract] [Full Text] [Related]
58. Combination of QuEChERS and DLLME for GC-MS determination of pesticide residues in orange samples. Andraščíková M, Hrouzková S, Cunha SC. Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2013 Jun 15; 30(2):286-97. PubMed ID: 23092184 [Abstract] [Full Text] [Related]
59. Evaluation of different cleanup sorbents for multiresidue pesticide analysis in fatty vegetable matrices by liquid chromatography tandem mass spectrometry. López-Blanco R, Nortes-Méndez R, Robles-Molina J, Moreno-González D, Gilbert-López B, García-Reyes JF, Molina-Díaz A. J Chromatogr A; 2016 Jul 22; 1456():89-104. PubMed ID: 27328883 [Abstract] [Full Text] [Related]
60. Evaluation of two fast and easy methods for pesticide residue analysis in fatty food matrixes. Lehotay SJ, Mastovská K, Yun SJ. J AOAC Int; 2005 Jul 22; 88(2):630-8. PubMed ID: 15859091 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]