These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. A novel method for retinal exudate segmentation using signal separation algorithm. Imani E, Pourreza HR. Comput Methods Programs Biomed; 2016 Sep; 133():195-205. PubMed ID: 27393810 [Abstract] [Full Text] [Related]
7. Exudate detection in color retinal images for mass screening of diabetic retinopathy. Zhang X, Thibault G, Decencière E, Marcotegui B, Laÿ B, Danno R, Cazuguel G, Quellec G, Lamard M, Massin P, Chabouis A, Victor Z, Erginay A. Med Image Anal; 2014 Oct; 18(7):1026-43. PubMed ID: 24972380 [Abstract] [Full Text] [Related]
8. Retinal image analysis for disease screening through local tetra patterns. Porwal P, Pachade S, Kokare M, Giancardo L, Mériaudeau F. Comput Biol Med; 2018 Nov 01; 102():200-210. PubMed ID: 30308336 [Abstract] [Full Text] [Related]
9. Fundus optic disc localization and segmentation method based on phase congruency. Geng L, Shao YT, Xiao ZT, Zhang F, Wu J, Li M, Shan CY. Biomed Mater Eng; 2014 Nov 01; 24(6):3223-9. PubMed ID: 25227031 [Abstract] [Full Text] [Related]
10. Optic Disk Detection in Fundus Image Based on Structured Learning. Fan Z, Rong Y, Cai X, Lu J, Li W, Lin H, Chen X. IEEE J Biomed Health Inform; 2018 Jan 01; 22(1):224-234. PubMed ID: 28692999 [Abstract] [Full Text] [Related]
11. Optic Disc Boundary and Vessel Origin Segmentation of Fundus Images. Roychowdhury S, Koozekanani DD, Kuchinka SN, Parhi KK. IEEE J Biomed Health Inform; 2016 Nov 01; 20(6):1562-1574. PubMed ID: 26316237 [Abstract] [Full Text] [Related]
13. Automated detection of optic disk in retinal fundus images using intuitionistic fuzzy histon segmentation. Mookiah MR, Acharya UR, Chua CK, Min LC, Ng EY, Mushrif MM, Laude A. Proc Inst Mech Eng H; 2013 Jan 01; 227(1):37-49. PubMed ID: 23516954 [Abstract] [Full Text] [Related]
14. A multi-scale tensor voting approach for small retinal vessel segmentation in high resolution fundus images. Christodoulidis A, Hurtut T, Tahar HB, Cheriet F. Comput Med Imaging Graph; 2016 Sep 01; 52():28-43. PubMed ID: 27341026 [Abstract] [Full Text] [Related]
15. A coarse-to-fine strategy for automatically detecting exudates in color eye fundus images. Welfer D, Scharcanski J, Marinho DR. Comput Med Imaging Graph; 2010 Apr 01; 34(3):228-35. PubMed ID: 19954928 [Abstract] [Full Text] [Related]
16. Fundus images analysis using deep features for detection of exudates, hemorrhages and microaneurysms. Khojasteh P, Aliahmad B, Kumar DK. BMC Ophthalmol; 2018 Nov 06; 18(1):288. PubMed ID: 30400869 [Abstract] [Full Text] [Related]
17. [Automatic detection of vessels in color fundus images]. Jiménez S, Alemany P, Fondón I, Foncubierta A, Acha B, Serrano C. Arch Soc Esp Oftalmol; 2010 Mar 06; 85(3):103-9. PubMed ID: 20619121 [Abstract] [Full Text] [Related]
18. Automatic optic disk detection in retinal images using hybrid vessel phase portrait analysis. Muangnak N, Aimmanee P, Makhanov S. Med Biol Eng Comput; 2018 Apr 06; 56(4):583-598. PubMed ID: 28836125 [Abstract] [Full Text] [Related]
19. Decision support system for the detection and grading of hard exudates from color fundus photographs. Jaafar HF, Nandi AK, Al-Nuaimy W. J Biomed Opt; 2011 Nov 06; 16(11):116001. PubMed ID: 22112106 [Abstract] [Full Text] [Related]
20. An ensemble classification of exudates in color fundus images using an evolutionary algorithm based optimal features selection. Ullah H, Saba T, Islam N, Abbas N, Rehman A, Mehmood Z, Anjum A. Microsc Res Tech; 2019 Apr 06; 82(4):361-372. PubMed ID: 30677193 [Abstract] [Full Text] [Related] Page: [Next] [New Search]