These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


105 related items for PubMed ID: 2766660

  • 1. Altered erythrocyte cation permeability in familial pseudohyperkalaemia.
    Dagher G, Vantyghem MC, Doise B, Lallau G, Racadot A, Lefebvre J.
    Clin Sci (Lond); 1989 Aug; 77(2):213-6. PubMed ID: 2766660
    [Abstract] [Full Text] [Related]

  • 2. Temperature sensitivity of potassium flux into red blood cells in the familial pseudohyperkalaemia syndrome.
    Meenaghan M, Follett GF, Brophy PJ.
    Biochim Biophys Acta; 1985 Nov 21; 821(1):72-8. PubMed ID: 2998465
    [Abstract] [Full Text] [Related]

  • 3. Four pedigrees of the cation-leaky hereditary stomatocytosis class presenting with pseudohyperkalaemia. Novel profile of temperature dependence of Na+-K+ leak in a xerocytic form.
    Gore DM, Layton M, Sinha AK, Williamson PJ, Vaidya B, Connolly V, Mannix P, Chetty MC, Nicolaou A, Stewart GW.
    Br J Haematol; 2004 May 21; 125(4):521-7. PubMed ID: 15142123
    [Abstract] [Full Text] [Related]

  • 4. Evaluation of ouabain-insensitive red blood cell cation transport in uremic patients.
    Boero R, Quarello F, Guarena C, Piccoli G.
    Boll Soc Ital Biol Sper; 1985 Feb 28; 61(2):243-8. PubMed ID: 3994843
    [Abstract] [Full Text] [Related]

  • 5. A family with mild hereditary xerocytosis showing high membrane cation permeability at low temperatures.
    Stewart GW, Ellory JC.
    Clin Sci (Lond); 1985 Sep 28; 69(3):309-19. PubMed ID: 4064573
    [Abstract] [Full Text] [Related]

  • 6. Familial pseudohyperkalaemia: inhibition of erythrocyte K+ efflux at 4 degrees C by quinine.
    James DR, Stansbie D.
    Clin Sci (Lond); 1987 Nov 28; 73(5):557-60. PubMed ID: 3677562
    [Abstract] [Full Text] [Related]

  • 7. [Pseudohyperkalemia of erythrocyte origin. Passive increase of membrane permeability to potassium].
    Enet-Renou N, Mirouze J, Dagher G, Dupont M, Richard JL, Mimran A.
    Pathol Biol (Paris); 1983 Sep 28; 31(7):583-8. PubMed ID: 6355987
    [Abstract] [Full Text] [Related]

  • 8. Familial pseudohyperkalaemia Chiswick: a novel congenital thermotropic variant of K and Na transport across the human red cell membrane.
    Haines PG, Crawley C, Chetty MC, Jarvis H, Coles SE, Fisher J, Nicolaou A, Stewart GW.
    Br J Haematol; 2001 Feb 28; 112(2):469-74. PubMed ID: 11167849
    [Abstract] [Full Text] [Related]

  • 9. Mechanism of alteration of sodium potassium pump of erythrocytes from patients with chronic renal failure.
    Cheng JT, Kahn T, Kaji DM.
    J Clin Invest; 1984 Nov 28; 74(5):1811-20. PubMed ID: 6094614
    [Abstract] [Full Text] [Related]

  • 10. Leaky cell syndrome: a rare cause of pseudohyperkalaemia.
    Lukens MV, de Mare A, Kerbert-Dreteler MJ, van den Bergh FA.
    Ann Clin Biochem; 2012 Jan 28; 49(Pt 1):97-100. PubMed ID: 22042978
    [Abstract] [Full Text] [Related]

  • 11. Effects of pH, potential, chloride and furosemide on passive Na+ and K+ effluxes from human red blood cells.
    Zade-Oppen AM, Adragna NC, Tosteson DC.
    J Membr Biol; 1988 Aug 28; 103(3):217-25. PubMed ID: 3184174
    [Abstract] [Full Text] [Related]

  • 12. A variant of hereditary stomatocytosis with marked pseudohyperkalaemia.
    Coles SE, Ho MM, Chetty MC, Nicolaou A, Stewart GW.
    Br J Haematol; 1999 Feb 28; 104(2):275-83. PubMed ID: 10050708
    [Abstract] [Full Text] [Related]

  • 13. The dependence on external cation of sodium and potassium fluxes across the human red cell membrane at low temperatures.
    Blackstock EJ, Stewart GW.
    J Physiol; 1986 Jun 28; 375():403-20. PubMed ID: 3795065
    [Abstract] [Full Text] [Related]

  • 14. Reduced ion transport in erythrocytes of male Sprague-Dawley rats during starvation.
    Zhao MJ, Willis JS.
    J Nutr; 1988 Sep 28; 118(9):1120-7. PubMed ID: 3418420
    [Abstract] [Full Text] [Related]

  • 15. Red cell membrane Na+ transport systems in hereditary spherocytosis: relevance to understanding the increased Na+ permeability.
    Vives Corrons JL, Besson I.
    Ann Hematol; 2001 Sep 28; 80(9):535-9. PubMed ID: 11669303
    [Abstract] [Full Text] [Related]

  • 16. Erythrocyte sodium ion transport system in DOC-salt, Goldblatt, and spontaneously hypertensive rats.
    Yokomatsu M, Fujito K, Numahata H, Koide H.
    Scand J Clin Lab Invest; 1992 Oct 28; 52(6):497-506. PubMed ID: 1329186
    [Abstract] [Full Text] [Related]

  • 17. The effect of cellular calcium on Na+/K+ cotransport in human red blood cells.
    Dagher G.
    Biochim Biophys Acta; 1987 May 29; 899(2):313-6. PubMed ID: 3107614
    [Abstract] [Full Text] [Related]

  • 18. Familial pseudohyperkalaemia Cardiff: a mild version of cryohydrocytosis.
    Gore DM, Chetty MC, Fisher J, Nicolaou A, Stewart GW.
    Br J Haematol; 2002 Apr 29; 117(1):212-4. PubMed ID: 11918557
    [Abstract] [Full Text] [Related]

  • 19. Altered permeability of the erythrocyte membrane for sodium and potassium ions in spontaneously hypertensive rats.
    Postnov YU, Orlov S, Gulak P, Shevchenko A.
    Pflugers Arch; 1976 Sep 30; 365(2-3):257-63. PubMed ID: 988566
    [Abstract] [Full Text] [Related]

  • 20. Erythrocyte Na+ and K+ transport systems in children with Bartter syndrome: increase in passive sodium permeability.
    Mongeau JG, Garay R, de Mendonca M, Broyer M, Meyer P.
    Kidney Int; 1983 Mar 30; 23(3):530-5. PubMed ID: 6302364
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.