These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


685 related items for PubMed ID: 27666938

  • 1. Proteomic approaches to quantify cysteine reversible modifications in aging and neurodegenerative diseases.
    Gu L, Robinson RA.
    Proteomics Clin Appl; 2016 Dec; 10(12):1159-1177. PubMed ID: 27666938
    [Abstract] [Full Text] [Related]

  • 2. Redox proteomics: from bench to bedside.
    Ckless K.
    Adv Exp Med Biol; 2014 Dec; 806():301-17. PubMed ID: 24952188
    [Abstract] [Full Text] [Related]

  • 3. Characterization of cellular oxidative stress response by stoichiometric redox proteomics.
    Zhang T, Gaffrey MJ, Li X, Qian WJ.
    Am J Physiol Cell Physiol; 2021 Feb 01; 320(2):C182-C194. PubMed ID: 33264075
    [Abstract] [Full Text] [Related]

  • 4. A simple isotopic labeling method to study cysteine oxidation in Alzheimer's disease: oxidized cysteine-selective dimethylation (OxcysDML).
    Gu L, Robinson RA.
    Anal Bioanal Chem; 2016 Apr 01; 408(11):2993-3004. PubMed ID: 26800981
    [Abstract] [Full Text] [Related]

  • 5. Mass spectrometry and redox proteomics: applications in disease.
    Butterfield DA, Gu L, Di Domenico F, Robinson RA.
    Mass Spectrom Rev; 2014 Apr 01; 33(4):277-301. PubMed ID: 24930952
    [Abstract] [Full Text] [Related]

  • 6. Activity-Based Sensing for Site-Specific Proteomic Analysis of Cysteine Oxidation.
    Shi Y, Carroll KS.
    Acc Chem Res; 2020 Jan 21; 53(1):20-31. PubMed ID: 31869209
    [Abstract] [Full Text] [Related]

  • 7. The Expanding Landscape of the Thiol Redox Proteome.
    Yang J, Carroll KS, Liebler DC.
    Mol Cell Proteomics; 2016 Jan 21; 15(1):1-11. PubMed ID: 26518762
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Gel-free proteomic methodologies to study reversible cysteine oxidation and irreversible protein carbonyl formation.
    Boronat S, García-Santamarina S, Hidalgo E.
    Free Radic Res; 2015 May 21; 49(5):494-510. PubMed ID: 25782062
    [Abstract] [Full Text] [Related]

  • 10. Redox Proteomes in Human Physiology and Disease Mechanisms.
    Mannaa A, Hanisch FG.
    J Proteome Res; 2020 Jan 03; 19(1):1-17. PubMed ID: 31647248
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Quantitative proteomic characterization of redox-dependent post-translational modifications on protein cysteines.
    Duan J, Gaffrey MJ, Qian WJ.
    Mol Biosyst; 2017 May 02; 13(5):816-829. PubMed ID: 28357434
    [Abstract] [Full Text] [Related]

  • 16. Sulfhydryl-mediated redox signaling in inflammation: role in neurodegenerative diseases.
    Gorelenkova Miller O, Mieyal JJ.
    Arch Toxicol; 2015 Sep 02; 89(9):1439-67. PubMed ID: 25827102
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Thiol redox proteomics: Characterization of thiol-based post-translational modifications.
    Li X, Gluth A, Zhang T, Qian WJ.
    Proteomics; 2023 Jul 02; 23(13-14):e2200194. PubMed ID: 37248656
    [Abstract] [Full Text] [Related]

  • 20. Mechanisms of altered redox regulation in neurodegenerative diseases--focus on S--glutathionylation.
    Sabens Liedhegner EA, Gao XH, Mieyal JJ.
    Antioxid Redox Signal; 2012 Mar 15; 16(6):543-66. PubMed ID: 22066468
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 35.