These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
632 related items for PubMed ID: 27680282
1. 3D printed alendronate-releasing poly(caprolactone) porous scaffolds enhance osteogenic differentiation and bone formation in rat tibial defects. Kim SE, Yun YP, Shim KS, Kim HJ, Park K, Song HR. Biomed Mater; 2016 Sep 29; 11(5):055005. PubMed ID: 27680282 [Abstract] [Full Text] [Related]
2. The Effect of Alendronate Loaded Biphasic Calcium Phosphate Scaffolds on Bone Regeneration in a Rat Tibial Defect Model. Park KW, Yun YP, Kim SE, Song HR. Int J Mol Sci; 2015 Nov 06; 16(11):26738-53. PubMed ID: 26561810 [Abstract] [Full Text] [Related]
3. The effect of alendronate-loaded polycarprolactone nanofibrous scaffolds on osteogenic differentiation of adipose-derived stem cells in bone tissue regeneration. Yun YP, Kim SJ, Lim YM, Park K, Kim HJ, Jeong SI, Kim SE, Song HR. J Biomed Nanotechnol; 2014 Jun 06; 10(6):1080-90. PubMed ID: 24749402 [Abstract] [Full Text] [Related]
4. Porosity effect of 3D-printed polycaprolactone membranes on calvarial defect model for guided bone regeneration. Shim JH, Jeong JH, Won JY, Bae JH, Ahn G, Jeon H, Yun WS, Bae EB, Choi JW, Lee SH, Jeong CM, Chung HY, Huh JB. Biomed Mater; 2017 Dec 15; 13(1):015014. PubMed ID: 29155411 [Abstract] [Full Text] [Related]
5. Enhanced osteogenic activity by MC3T3-E1 pre-osteoblasts on chemically surface-modified poly(ε-caprolactone) 3D-printed scaffolds compared to RGD immobilized scaffolds. Zamani Y, Mohammadi J, Amoabediny G, Visscher DO, Helder MN, Zandieh-Doulabi B, Klein-Nulend J. Biomed Mater; 2018 Nov 13; 14(1):015008. PubMed ID: 30421722 [Abstract] [Full Text] [Related]
6. Novel 3D scaffold with enhanced physical and cell response properties for bone tissue regeneration, fabricated by patterned electrospinning/electrospraying. Hejazi F, Mirzadeh H. J Mater Sci Mater Med; 2016 Sep 13; 27(9):143. PubMed ID: 27550014 [Abstract] [Full Text] [Related]
7. Polycaprolactone-coated 3D printed tricalcium phosphate scaffolds for bone tissue engineering: in vitro alendronate release behavior and local delivery effect on in vivo osteogenesis. Tarafder S, Bose S. ACS Appl Mater Interfaces; 2014 Jul 09; 6(13):9955-65. PubMed ID: 24826838 [Abstract] [Full Text] [Related]
8. Evaluation of new bone formation in critical-sized rat calvarial defect using 3D printed polycaprolactone/tragacanth gum-bioactive glass composite scaffolds. Janmohammadi M, Doostmohammadi N, Bahraminasab M, Nourbakhsh MS, Arab S, Asgharzade S, Ghanbari A, Satari A. Int J Biol Macromol; 2024 Jun 09; 270(Pt 1):132361. PubMed ID: 38750857 [Abstract] [Full Text] [Related]
9. Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds. Wang T, Yang X, Qi X, Jiang C. J Transl Med; 2015 May 08; 13():152. PubMed ID: 25952675 [Abstract] [Full Text] [Related]
10. Three dimensionally printed pearl powder/poly-caprolactone composite scaffolds for bone regeneration. Zhang X, Du X, Li D, Ao R, Yu B, Yu B. J Biomater Sci Polym Ed; 2018 Oct 08; 29(14):1686-1700. PubMed ID: 29768120 [Abstract] [Full Text] [Related]
11. Alendronate-Eluting Biphasic Calcium Phosphate (BCP) Scaffolds Stimulate Osteogenic Differentiation. Kim SE, Yun YP, Lee DW, Kang EY, Jeong WJ, Lee B, Jeong MS, Kim HJ, Park K, Song HR. Biomed Res Int; 2015 Oct 08; 2015():320713. PubMed ID: 26221587 [Abstract] [Full Text] [Related]
12. Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering. Lee SJ, Lee D, Yoon TR, Kim HK, Jo HH, Park JS, Lee JH, Kim WD, Kwon IK, Park SA. Acta Biomater; 2016 Aug 08; 40():182-191. PubMed ID: 26868173 [Abstract] [Full Text] [Related]
13. Composite clinoptilolite/PCL-PEG-PCL scaffolds for bone regeneration: In vitro and in vivo evaluation. Pazarçeviren AE, Dikmen T, Altunbaş K, Yaprakçı V, Erdemli Ö, Keskin D, Tezcaner A. J Tissue Eng Regen Med; 2020 Jan 08; 14(1):3-15. PubMed ID: 31475790 [Abstract] [Full Text] [Related]
14. Resveratrol-conjugated poly-ε-caprolactone facilitates in vitro mineralization and in vivo bone regeneration. Li Y, Dånmark S, Edlund U, Finne-Wistrand A, He X, Norgård M, Blomén E, Hultenby K, Andersson G, Lindgren U. Acta Biomater; 2011 Feb 08; 7(2):751-8. PubMed ID: 20849988 [Abstract] [Full Text] [Related]
15. Efficacy of rhBMP-2 Loaded PCL/β-TCP/bdECM Scaffold Fabricated by 3D Printing Technology on Bone Regeneration. Bae EB, Park KH, Shim JH, Chung HY, Choi JW, Lee JJ, Kim CH, Jeon HJ, Kang SS, Huh JB. Biomed Res Int; 2018 Feb 08; 2018():2876135. PubMed ID: 29682530 [Abstract] [Full Text] [Related]
16. Electrophoretic Deposition of Dexamethasone-Loaded Mesoporous Silica Nanoparticles onto Poly(L-Lactic Acid)/Poly(ε-Caprolactone) Composite Scaffold for Bone Tissue Engineering. Qiu K, Chen B, Nie W, Zhou X, Feng W, Wang W, Chen L, Mo X, Wei Y, He C. ACS Appl Mater Interfaces; 2016 Feb 17; 8(6):4137-48. PubMed ID: 26736029 [Abstract] [Full Text] [Related]
17. The synergistic effects of graphene-contained 3D-printed calcium silicate/poly-ε-caprolactone scaffolds promote FGFR-induced osteogenic/angiogenic differentiation of mesenchymal stem cells. Lin YH, Chuang TY, Chiang WH, Chen IP, Wang K, Shie MY, Chen YW. Mater Sci Eng C Mater Biol Appl; 2019 Nov 17; 104():109887. PubMed ID: 31500024 [Abstract] [Full Text] [Related]
18. 3D printed porous PLA/nHA composite scaffolds with enhanced osteogenesis and osteoconductivity in vivo for bone regeneration. Chen X, Gao C, Jiang J, Wu Y, Zhu P, Chen G. Biomed Mater; 2019 Sep 09; 14(6):065003. PubMed ID: 31382255 [Abstract] [Full Text] [Related]
19. Preparation and characterization of a three-dimensional printed scaffold based on a functionalized polyester for bone tissue engineering applications. Seyednejad H, Gawlitta D, Dhert WJ, van Nostrum CF, Vermonden T, Hennink WE. Acta Biomater; 2011 May 09; 7(5):1999-2006. PubMed ID: 21241834 [Abstract] [Full Text] [Related]
20. Regeneration of Bone Defects in a Rabbit Femoral Osteonecrosis Model Using 3D-Printed Poly (Epsilon-Caprolactone)/Nanoparticulate Willemite Composite Scaffolds. Karimzadeh Bardeei L, Seyedjafari E, Hossein G, Nabiuni M, Majles Ara MH, Salber J. Int J Mol Sci; 2021 Sep 25; 22(19):. PubMed ID: 34638673 [Abstract] [Full Text] [Related] Page: [Next] [New Search]