These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


144 related items for PubMed ID: 2768083

  • 1. A temporal bone preparation for the study of cochlear micromechanics at the cellular level.
    Ulfendahl M, Flock A, Khanna SM.
    Hear Res; 1989 Jun 15; 40(1-2):55-64. PubMed ID: 2768083
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Effects of opening and resealing the cochlea on the mechanical response in the isolated temporal bone preparation.
    Ulfendahl M, Khanna SM, Flock A.
    Hear Res; 1991 Dec 15; 57(1):31-7. PubMed ID: 1774209
    [Abstract] [Full Text] [Related]

  • 5. Modeling of sound transmission from ear canal to cochlea.
    Gan RZ, Reeves BP, Wang X.
    Ann Biomed Eng; 2007 Dec 15; 35(12):2180-95. PubMed ID: 17882549
    [Abstract] [Full Text] [Related]

  • 6. Surgical anatomy of the guinea pig ear.
    Asarch R, Abramson M, Litton WB.
    Ann Otol Rhinol Laryngol; 1975 Dec 15; 84(2 PART 1):250-5. PubMed ID: 1124912
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Acoustically induced vibrations of the Reissner's membrane in the guinea-pig inner ear.
    Ulfendahl M, Khanna SM, Decraemer WF.
    Acta Physiol Scand; 1996 Nov 15; 158(3):275-85. PubMed ID: 8931771
    [Abstract] [Full Text] [Related]

  • 9. Middle ear vibration and sound pressure measurements in the isolated cochlea preparation.
    Khanna SM, Flock A, Ulfendahl M, Decraemer WF.
    Acta Otolaryngol Suppl; 1989 Nov 15; 467():131-7. PubMed ID: 2516687
    [No Abstract] [Full Text] [Related]

  • 10. Middle ear, cochlea, and Tonndorf.
    Zwislocki JJ.
    Am J Otolaryngol; 1981 Aug 15; 2(3):240-50. PubMed ID: 7025677
    [Abstract] [Full Text] [Related]

  • 11. Model predictions for bone conduction perception in the human.
    Stenfelt S.
    Hear Res; 2016 Oct 15; 340():135-143. PubMed ID: 26657096
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. The effect of static force on round window stimulation with the direct acoustic cochlea stimulator.
    Maier H, Salcher R, Schwab B, Lenarz T.
    Hear Res; 2013 Jul 15; 301():115-24. PubMed ID: 23276731
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. [Comparison of differental intracochlear pressures between round window stimulation and ear canal stimulation].
    Wang X.
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Dec 15; 29(6):1109-13. PubMed ID: 23469540
    [Abstract] [Full Text] [Related]

  • 16. Mechanical tuning characteristics of the hearing organ measured at the sensory cells in the gerbil temporal bone preparation.
    Ulfendahl M, Khanna SM.
    Pflugers Arch; 1993 Jul 15; 424(2):95-104. PubMed ID: 8414906
    [Abstract] [Full Text] [Related]

  • 17. Finite element modelling of human auditory periphery including a feed-forward amplification of the cochlea.
    Wang X, Wang L, Zhou J, Hu Y.
    Comput Methods Biomech Biomed Engin; 2014 Aug 15; 17(10):1096-107. PubMed ID: 23171060
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Effects of caffeine on the micromechanics of the isolated cochlea.
    Ulfendahl M, Khanna SM, Flock A.
    Acta Otolaryngol Suppl; 1989 Aug 15; 467():221-8. PubMed ID: 2626932
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.