These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
105 related items for PubMed ID: 27705055
1. A Comparison of Vertical Stiffness Values Calculated from Different Measures of Center of Mass Displacement in Single-Leg Hopping. Mudie KL, Gupta A, Green S, Hobara H, Clothier PJ. J Appl Biomech; 2017 Feb; 33(1):39-47. PubMed ID: 27705055 [Abstract] [Full Text] [Related]
2. A comparison of computation methods for leg stiffness during hopping. Hobara H, Inoue K, Kobayashi Y, Ogata T. J Appl Biomech; 2014 Feb; 30(1):154-9. PubMed ID: 24676522 [Abstract] [Full Text] [Related]
3. Differences in spring-mass characteristics between one- and two-legged hopping. Hobara H, Kobayashi Y, Kato E, Ogata T. J Appl Biomech; 2013 Dec; 29(6):785-9. PubMed ID: 23271206 [Abstract] [Full Text] [Related]
4. Effect of hopping frequency on bilateral differences in leg stiffness. Hobara H, Inoue K, Kanosue K. J Appl Biomech; 2013 Feb; 29(1):55-60. PubMed ID: 23462443 [Abstract] [Full Text] [Related]
5. Leg stiffness adjustment during hopping at different intensities and frequencies. Mrdakovic V, Ilic D, Vulovic R, Matic M, Jankovic N, Filipovic N. Acta Bioeng Biomech; 2014 Feb; 16(3):69-76. PubMed ID: 25308379 [Abstract] [Full Text] [Related]
6. Comparison between kinematic and kinetic methods for computing the vertical displacement of the center of mass during human hopping at different frequencies. Ranavolo A, Don R, Cacchio A, Serrao M, Paoloni M, Mangone M, Santilli V. J Appl Biomech; 2008 Aug; 24(3):271-9. PubMed ID: 18843157 [Abstract] [Full Text] [Related]
7. The interday reliability of ankle, knee, leg, and vertical musculoskeletal stiffness during hopping and overground running. Joseph CW, Bradshaw EJ, Kemp J, Clark RA. J Appl Biomech; 2013 Aug; 29(4):386-94. PubMed ID: 22923423 [Abstract] [Full Text] [Related]
8. Effective leg stiffness in running. Blum Y, Lipfert SW, Seyfarth A. J Biomech; 2009 Oct 16; 42(14):2400-5. PubMed ID: 19647825 [Abstract] [Full Text] [Related]
9. A comparison of methods to determine bilateral asymmetries in vertical leg stiffness. Maloney SJ, Fletcher IM, Richards J. J Sports Sci; 2016 Oct 16; 34(9):829-35. PubMed ID: 26230224 [Abstract] [Full Text] [Related]
10. Estimates of Running Ground Reaction Force Parameters from Motion Analysis. Pavei G, Seminati E, Storniolo JL, Peyré-Tartaruga LA. J Appl Biomech; 2017 Feb 16; 33(1):69-75. PubMed ID: 27705058 [Abstract] [Full Text] [Related]
11. Leg stiffness adjustment for a range of hopping frequencies in humans. Hobara H, Inoue K, Muraoka T, Omuro K, Sakamoto M, Kanosue K. J Biomech; 2010 Feb 10; 43(3):506-11. PubMed ID: 19879582 [Abstract] [Full Text] [Related]
18. Reliability of Unilateral Vertical Leg Stiffness Measures Assessed During Bilateral Hopping. Maloney SJ, Fletcher IM, Richards J. J Appl Biomech; 2015 Oct 10; 31(5):285-91. PubMed ID: 25880542 [Abstract] [Full Text] [Related]
19. Neural control of leg stiffness during hopping in boys and men. Oliver JL, Smith PM. J Electromyogr Kinesiol; 2010 Oct 10; 20(5):973-9. PubMed ID: 20409733 [Abstract] [Full Text] [Related]
20. Neuromechanical stabilization of leg length and orientation through interjoint compensation during human hopping. Auyang AG, Yen JT, Chang YH. Exp Brain Res; 2009 Jan 10; 192(2):253-64. PubMed ID: 18839158 [Abstract] [Full Text] [Related] Page: [Next] [New Search]