These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


178 related items for PubMed ID: 27708428

  • 1. GSF2 deletion increases lactic acid production by alleviating glucose repression in Saccharomyces cerevisiae.
    Baek SH, Kwon EY, Kim SY, Hahn JS.
    Sci Rep; 2016 Oct 06; 6():34812. PubMed ID: 27708428
    [Abstract] [Full Text] [Related]

  • 2. Improvement of d-Lactic Acid Production in Saccharomyces cerevisiae Under Acidic Conditions by Evolutionary and Rational Metabolic Engineering.
    Baek SH, Kwon EY, Bae SJ, Cho BR, Kim SY, Hahn JS.
    Biotechnol J; 2017 Oct 06; 12(10):. PubMed ID: 28731533
    [Abstract] [Full Text] [Related]

  • 3. Metabolic engineering and adaptive evolution for efficient production of D-lactic acid in Saccharomyces cerevisiae.
    Baek SH, Kwon EY, Kim YH, Hahn JS.
    Appl Microbiol Biotechnol; 2016 Mar 06; 100(6):2737-48. PubMed ID: 26596574
    [Abstract] [Full Text] [Related]

  • 4. [Effect of MIG1 and SNF1 deletion on simultaneous utilization of glucose and xylose by Saccharomyces cerevisiae].
    Cai Y, Qi X, Qi Q, Lin Y, Wang Z, Wang Q.
    Sheng Wu Gong Cheng Xue Bao; 2018 Jan 25; 34(1):54-67. PubMed ID: 29380571
    [Abstract] [Full Text] [Related]

  • 5. Construction of lactic acid-tolerant Saccharomyces cerevisiae by using CRISPR-Cas-mediated genome evolution for efficient D-lactic acid production.
    Mitsui R, Yamada R, Matsumoto T, Yoshihara S, Tokumoto H, Ogino H.
    Appl Microbiol Biotechnol; 2020 Nov 25; 104(21):9147-9158. PubMed ID: 32960291
    [Abstract] [Full Text] [Related]

  • 6. Mutations in GSF1 and GSF2 alter glucose signaling in Saccharomyces cerevisiae.
    Sherwood PW, Carlson M.
    Genetics; 1997 Oct 25; 147(2):557-66. PubMed ID: 9335593
    [Abstract] [Full Text] [Related]

  • 7. The glucose-regulated nuclear localization of hexokinase 2 in Saccharomyces cerevisiae is Mig1-dependent.
    Ahuatzi D, Herrero P, de la Cera T, Moreno F.
    J Biol Chem; 2004 Apr 02; 279(14):14440-6. PubMed ID: 14715653
    [Abstract] [Full Text] [Related]

  • 8. Hexokinase 2 Is an Intracellular Glucose Sensor of Yeast Cells That Maintains the Structure and Activity of Mig1 Protein Repressor Complex.
    Vega M, Riera A, Fernández-Cid A, Herrero P, Moreno F.
    J Biol Chem; 2016 Apr 01; 291(14):7267-85. PubMed ID: 26865637
    [Abstract] [Full Text] [Related]

  • 9. Metabolic Engineering and Adaptive Evolution for Efficient Production of l-Lactic Acid in Saccharomyces cerevisiae.
    Zhu P, Luo R, Li Y, Chen X.
    Microbiol Spectr; 2022 Dec 21; 10(6):e0227722. PubMed ID: 36354322
    [Abstract] [Full Text] [Related]

  • 10. Mig1 localization exhibits biphasic behavior which is controlled by both metabolic and regulatory roles of the sugar kinases.
    Schmidt GW, Welkenhuysen N, Ye T, Cvijovic M, Hohmann S.
    Mol Genet Genomics; 2020 Nov 21; 295(6):1489-1500. PubMed ID: 32948893
    [Abstract] [Full Text] [Related]

  • 11. Toward "homolactic" fermentation of glucose and xylose by engineered Saccharomyces cerevisiae harboring a kinetically efficient l-lactate dehydrogenase within pdc1-pdc5 deletion background.
    Novy V, Brunner B, Müller G, Nidetzky B.
    Biotechnol Bioeng; 2017 Jan 21; 114(1):163-171. PubMed ID: 27426989
    [Abstract] [Full Text] [Related]

  • 12. The impact of MIG1 and/or MIG2 disruption on aerobic metabolism of succinate dehydrogenase negative Saccharomyces cerevisiae.
    Cao H, Yue M, Li S, Bai X, Zhao X, Du Y.
    Appl Microbiol Biotechnol; 2011 Feb 21; 89(3):733-8. PubMed ID: 20938771
    [Abstract] [Full Text] [Related]

  • 13. Improved Xylose Metabolism by a CYC8 Mutant of Saccharomyces cerevisiae.
    Nijland JG, Shin HY, Boender LGM, de Waal PP, Klaassen P, Driessen AJM.
    Appl Environ Microbiol; 2017 Jun 01; 83(11):. PubMed ID: 28363963
    [Abstract] [Full Text] [Related]

  • 14. Saccharomyces cerevisiae, key role of MIG1 gene in metabolic switching: putative fermentation/oxidation.
    Alipourfard I, Bakhtiyari S, Datukishvili N, Haghani K, Di Renzo L, De Miranda RC, Cioccoloni G, Basiratyan Yazdi P, Mikeladze D.
    J Biol Regul Homeost Agents; 2018 Jun 01; 32(3):649-654. PubMed ID: 29921394
    [Abstract] [Full Text] [Related]

  • 15. Functional analysis of Mig1 and Rag5 as expressional regulators in thermotolerant yeast Kluyveromyces marxianus.
    Nurcholis M, Nitiyon S, Suprayogi, Rodrussamee N, Lertwattanasakul N, Limtong S, Kosaka T, Yamada M.
    Appl Microbiol Biotechnol; 2019 Jan 01; 103(1):395-410. PubMed ID: 30397769
    [Abstract] [Full Text] [Related]

  • 16. Genome-wide identification of the targets for genetic manipulation to improve L-lactate production by Saccharomyces cerevisiae by using a single-gene deletion strain collection.
    Hirasawa T, Takekuni M, Yoshikawa K, Ookubo A, Furusawa C, Shimizu H.
    J Biotechnol; 2013 Oct 20; 168(2):185-93. PubMed ID: 23665193
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Efficient export of the glucose transporter Hxt1p from the endoplasmic reticulum requires Gsf2p.
    Sherwood PW, Carlson M.
    Proc Natl Acad Sci U S A; 1999 Jun 22; 96(13):7415-20. PubMed ID: 10377429
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Characteristics of Saccharomyces cerevisiae gal1 Delta and gal1 Delta hxk2 Delta mutants expressing recombinant proteins from the GAL promoter.
    Kang HA, Kang WK, Go SM, Rezaee A, Krishna SH, Rhee SK, Kim JY.
    Biotechnol Bioeng; 2005 Mar 20; 89(6):619-29. PubMed ID: 15696522
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.