These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


114 related items for PubMed ID: 27713026

  • 1. Agents that activate the High Osmolarity Glycerol pathway as a means to combat pathogenic molds.
    Wiedemann A, Spadinger A, Löwe A, Seeger A, Ebel F.
    Int J Med Microbiol; 2016 Dec; 306(8):642-651. PubMed ID: 27713026
    [Abstract] [Full Text] [Related]

  • 2. The N-terminus of the Aspergillus fumigatus group III hybrid histidine kinase TcsC is essential for its physiological activity and targets the protein to the nucleus.
    Vincek A, Wolf A, Thomas A, Ebel F, Schruefer S.
    mBio; 2024 Jul 17; 15(7):e0118424. PubMed ID: 38832777
    [Abstract] [Full Text] [Related]

  • 3. Distinct transcriptional responses to fludioxonil in Aspergillus fumigatus and its ΔtcsC and Δskn7 mutants reveal a crucial role for Skn7 in the cell wall reorganizations triggered by this antifungal.
    Schruefer S, Pschibul A, Wong SSW, Sae-Ong T, Wolf T, Schäuble S, Panagiotou G, Brakhage AA, Aimanianda V, Kniemeyer O, Ebel F.
    BMC Genomics; 2023 Nov 14; 24(1):684. PubMed ID: 37964194
    [Abstract] [Full Text] [Related]

  • 4. The response regulator Skn7 of Aspergillus fumigatus is essential for the antifungal effect of fludioxonil.
    Schruefer S, Böhmer I, Dichtl K, Spadinger A, Kleinemeier C, Ebel F.
    Sci Rep; 2021 Mar 05; 11(1):5317. PubMed ID: 33674651
    [Abstract] [Full Text] [Related]

  • 5. Functional comparison of the group III hybrid histidine kinases TcsC of Aspergillus fumigatus and NikA of Aspergillus nidulans.
    Böhmer I, Spadinger A, Ebel F.
    Med Mycol; 2020 Apr 01; 58(3):362-371. PubMed ID: 31254343
    [Abstract] [Full Text] [Related]

  • 6. Molecular characterization of Aspergillus fumigatus TcsC, a characteristic type III hybrid histidine kinase of filamentous fungi harboring six HAMP domains.
    Spadinger A, Ebel F.
    Int J Med Microbiol; 2017 Jun 01; 307(4-5):200-208. PubMed ID: 28527583
    [Abstract] [Full Text] [Related]

  • 7. Effects of iprodione and fludioxonil on glycerol synthesis and hyphal development in Candida albicans.
    Ochiai N, Fujimura M, Oshima M, Motoyama T, Ichiishi A, Yamada-Okabe H, Yamaguchi I.
    Biosci Biotechnol Biochem; 2002 Oct 01; 66(10):2209-15. PubMed ID: 12450134
    [Abstract] [Full Text] [Related]

  • 8. The two-component sensor kinase TcsC and its role in stress resistance of the human-pathogenic mold Aspergillus fumigatus.
    McCormick A, Jacobsen ID, Broniszewska M, Beck J, Heesemann J, Ebel F.
    PLoS One; 2012 Oct 01; 7(6):e38262. PubMed ID: 22675534
    [Abstract] [Full Text] [Related]

  • 9. Wide distribution of resistance to the fungicides fludioxonil and iprodione in Penicillium species.
    Oiki S, Yaguchi T, Urayama SI, Hagiwara D.
    PLoS One; 2022 Oct 01; 17(1):e0262521. PubMed ID: 35100282
    [Abstract] [Full Text] [Related]

  • 10. Characterization of mutations in the two-component histidine kinase gene that confer fludioxonil resistance and osmotic sensitivity in the os-1 mutants of Neurospora crassa.
    Ochiai N, Fujimura M, Motoyama T, Ichiishi A, Usami R, Horikoshi K, Yamaguchi I.
    Pest Manag Sci; 2001 May 01; 57(5):437-42. PubMed ID: 11374161
    [Abstract] [Full Text] [Related]

  • 11. Binding Mode and Molecular Mechanism of the Two-Component Histidine Kinase Bos1 of Botrytis cinerea to Fludioxonil and Iprodione.
    Yin X, Li P, Wang Z, Wang J, Fang A, Tian B, Yang Y, Yu Y, Bi C.
    Phytopathology; 2024 Apr 01; 114(4):770-779. PubMed ID: 38598410
    [Abstract] [Full Text] [Related]

  • 12. Characterization of the NikA histidine kinase implicated in the phosphorelay signal transduction of Aspergillus nidulans, with special reference to fungicide responses.
    Hagiwara D, Matsubayashi Y, Marui J, Furukawa K, Yamashino T, Kanamaru K, Kato M, Abe K, Kobayashi T, Mizuno T.
    Biosci Biotechnol Biochem; 2007 Mar 01; 71(3):844-7. PubMed ID: 17341812
    [Abstract] [Full Text] [Related]

  • 13. Transcriptional profiling for Aspergillusnidulans HogA MAPK signaling pathway in response to fludioxonil and osmotic stress.
    Hagiwara D, Asano Y, Marui J, Yoshimi A, Mizuno T, Abe K.
    Fungal Genet Biol; 2009 Nov 01; 46(11):868-78. PubMed ID: 19596074
    [Abstract] [Full Text] [Related]

  • 14. Two histidine kinases can sense different stress cues for activation of the MAPK Hog1 in a fungal insect pathogen.
    Liu J, Tong SM, Qiu L, Ying SH, Feng MG.
    Environ Microbiol; 2017 Oct 01; 19(10):4091-4102. PubMed ID: 28677226
    [Abstract] [Full Text] [Related]

  • 15. NikA/TcsC histidine kinase is involved in conidiation, hyphal morphology, and responses to osmotic stress and antifungal chemicals in Aspergillus fumigatus.
    Hagiwara D, Takahashi-Nakaguchi A, Toyotome T, Yoshimi A, Abe K, Kamei K, Gonoi T, Kawamoto S.
    PLoS One; 2013 Oct 01; 8(12):e80881. PubMed ID: 24312504
    [Abstract] [Full Text] [Related]

  • 16. Two-component response regulators Ssk1p and Skn7p additively regulate high-osmolarity adaptation and fungicide sensitivity in Cochliobolus heterostrophus.
    Izumitsu K, Yoshimi A, Tanaka C.
    Eukaryot Cell; 2007 Feb 01; 6(2):171-81. PubMed ID: 17158737
    [Abstract] [Full Text] [Related]

  • 17. Sensitivity of Penicillium expansum field isolates to tebuconazole, iprodione, fludioxonil and cyprodinil and characterization of fitness parameters and patulin production.
    Karaoglanidis GS, Markoglou AN, Bardas GA, Doukas EG, Konstantinou S, Kalampokis JF.
    Int J Food Microbiol; 2011 Jan 31; 145(1):195-204. PubMed ID: 21251724
    [Abstract] [Full Text] [Related]

  • 18. Fungicide activity through activation of a fungal signalling pathway.
    Kojima K, Takano Y, Yoshimi A, Tanaka C, Kikuchi T, Okuno T.
    Mol Microbiol; 2004 Sep 31; 53(6):1785-96. PubMed ID: 15341655
    [Abstract] [Full Text] [Related]

  • 19. Resistance risk assessment for fludioxonil in Sclerotinia homoeocarpa in China.
    Hu J, Zhou Y, Gao T, Geng J, Dai Y, Ren H, Lamour K, Liu X.
    Pestic Biochem Physiol; 2019 May 31; 156():123-128. PubMed ID: 31027571
    [Abstract] [Full Text] [Related]

  • 20. Characterization of iprodione resistance in Botrytis cinerea from strawberry and blackberry.
    Grabke A, Fernández-Ortuño D, Amiri A, Li X, Peres NA, Smith P, Schnabel G.
    Phytopathology; 2014 Apr 31; 104(4):396-402. PubMed ID: 24156554
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.