These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


401 related items for PubMed ID: 27714247

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. From mechanism to mouse: a tale of two bioorthogonal reactions.
    Sletten EM, Bertozzi CR.
    Acc Chem Res; 2011 Sep 20; 44(9):666-76. PubMed ID: 21838330
    [Abstract] [Full Text] [Related]

  • 6. Comparative analysis of Cu (I)-catalyzed alkyne-azide cycloaddition (CuAAC) and strain-promoted alkyne-azide cycloaddition (SPAAC) in O-GlcNAc proteomics.
    Li S, Zhu H, Wang J, Wang X, Li X, Ma C, Wen L, Yu B, Wang Y, Li J, Wang PG.
    Electrophoresis; 2016 Jun 20; 37(11):1431-6. PubMed ID: 26853435
    [Abstract] [Full Text] [Related]

  • 7. Facile Quenching and Spatial Patterning of Cylooctynes via Strain-Promoted Alkyne-Azide Cycloaddition of Inorganic Azides.
    Bjerknes M, Cheng H, McNitt CD, Popik VV.
    Bioconjug Chem; 2017 May 17; 28(5):1560-1565. PubMed ID: 28437092
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Optimizing the selectivity of DIFO-based reagents for intracellular bioorthogonal applications.
    Kim EJ, Kang DW, Leucke HF, Bond MR, Ghosh S, Love DC, Ahn JS, Kang DO, Hanover JA.
    Carbohydr Res; 2013 Aug 09; 377():18-27. PubMed ID: 23770695
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Reliable and efficient procedures for the conjugation of biomolecules through Huisgen azide-alkyne cycloadditions.
    Lallana E, Riguera R, Fernandez-Megia E.
    Angew Chem Int Ed Engl; 2011 Sep 12; 50(38):8794-804. PubMed ID: 21905176
    [Abstract] [Full Text] [Related]

  • 13. Modification of Protein Scaffolds via Copper-Catalyzed Azide-Alkyne Cycloaddition.
    Presolski S.
    Methods Mol Biol; 2018 Sep 12; 1798():187-193. PubMed ID: 29868960
    [Abstract] [Full Text] [Related]

  • 14. Structural Determinants of Alkyne Reactivity in Copper-Catalyzed Azide-Alkyne Cycloadditions.
    Zhang X, Liu P, Zhu L.
    Molecules; 2016 Dec 09; 21(12):. PubMed ID: 27941684
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Interfacial strain-promoted alkyne-azide cycloaddition (I-SPAAC) for the synthesis of nanomaterial hybrids.
    Gobbo P, Novoa S, Biesinger MC, Workentin MS.
    Chem Commun (Camb); 2013 May 11; 49(38):3982-4. PubMed ID: 23549164
    [Abstract] [Full Text] [Related]

  • 20. Optimized Methods for the Production and Bioconjugation of Site-Specific, Alkyne-Modified Glucagon-like Peptide-1 (GLP-1) Analogs to Azide-Modified Delivery Platforms Using Copper-Catalyzed Alkyne-Azide Cycloaddition.
    Alavi SE, Cabot PJ, Yap GY, Moyle PM.
    Bioconjug Chem; 2020 Jul 15; 31(7):1820-1834. PubMed ID: 32543833
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 21.