These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


177 related items for PubMed ID: 27717064

  • 1. High-order motor cortex in rats receives somatosensory inputs from the primary motor cortex via cortico-cortical pathways.
    Kunori N, Takashima I.
    Eur J Neurosci; 2016 Dec; 44(11):2925-2934. PubMed ID: 27717064
    [Abstract] [Full Text] [Related]

  • 2. Ipsilateral cortical inputs to the rostral and caudal motor areas in rats.
    Mohammed H, Jain N.
    J Comp Neurol; 2016 Oct 15; 524(15):3104-23. PubMed ID: 27037503
    [Abstract] [Full Text] [Related]

  • 3. Quantitative analyses of thalamic and cortical origins of neurons projecting to the rostral and caudal forelimb motor areas in the cerebral cortex of rats.
    Wang Y, Kurata K.
    Brain Res; 1998 Jan 19; 781(1-2):137-47. PubMed ID: 9507093
    [Abstract] [Full Text] [Related]

  • 4. Modulation of sustained electromyographic activity by single intracortical microstimuli: comparison of two forelimb motor cortical areas of the rat.
    Liang F, Rouiller EM, Wiesendanger M.
    Somatosens Mot Res; 1993 Jan 19; 10(1):51-61. PubMed ID: 8484296
    [Abstract] [Full Text] [Related]

  • 5. Comparison of the connectional properties of the two forelimb areas of the rat sensorimotor cortex: support for the presence of a premotor or supplementary motor cortical area.
    Rouiller EM, Moret V, Liang F.
    Somatosens Mot Res; 1993 Jan 19; 10(3):269-89. PubMed ID: 8237215
    [Abstract] [Full Text] [Related]

  • 6. Interhemispheric modulations of motor outputs by the rostral and caudal forelimb areas in rats.
    Touvykine B, Elgbeili G, Quessy S, Dancause N.
    J Neurophysiol; 2020 Apr 01; 123(4):1355-1368. PubMed ID: 32130080
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Responses of cat motor cortex neurons to cortico-cortical and somatosensory inputs.
    Herman D, Kang R, MacGillis M, Zarzecki P.
    Exp Brain Res; 1985 Apr 01; 57(3):598-604. PubMed ID: 2984038
    [Abstract] [Full Text] [Related]

  • 9. In vivo optogenetic tracing of functional corticocortical connections between motor forelimb areas.
    Hira R, Ohkubo F, Tanaka YR, Masamizu Y, Augustine GJ, Kasai H, Matsuzaki M.
    Front Neural Circuits; 2013 Apr 01; 7():55. PubMed ID: 23554588
    [Abstract] [Full Text] [Related]

  • 10. A chronic unit study of the sensory properties of neurons in the forelimb areas of rat sensorimotor cortex.
    Sievert CF, Neafsey EJ.
    Brain Res; 1986 Aug 27; 381(1):15-23. PubMed ID: 3530375
    [Abstract] [Full Text] [Related]

  • 11. Intact intracortical microstimulation (ICMS) representations of rostral and caudal forelimb areas in rats with quinolinic acid lesions of the medial or lateral caudate-putamen in an animal model of Huntington's disease.
    Karl JM, Sacrey LA, McDonald RJ, Whishaw IQ.
    Brain Res Bull; 2008 Sep 05; 77(1):42-8. PubMed ID: 18639744
    [Abstract] [Full Text] [Related]

  • 12. Two whisker motor areas in the rat cortex: evidence from thalamocortical connections.
    Mohammed H, Jain N.
    J Comp Neurol; 2014 Feb 15; 522(3):528-45. PubMed ID: 23853077
    [Abstract] [Full Text] [Related]

  • 13. Development and plasticity of complex movement representations.
    Singleton AC, Brown AR, Teskey GC.
    J Neurophysiol; 2021 Feb 01; 125(2):628-637. PubMed ID: 33471611
    [Abstract] [Full Text] [Related]

  • 14. Corticocortical connections of the rostral forelimb area in rats: a quantitative tract-tracing study.
    Urban Iii ET, Hudson HM, Li Y, Nishibe M, Barbay S, Guggenmos DJ, Nudo RJ.
    Cereb Cortex; 2024 Jan 31; 34(2):. PubMed ID: 38265300
    [Abstract] [Full Text] [Related]

  • 15. Post-ischemic reorganization of sensory responses in cerebral cortex.
    Hayley P, Tuchek C, Dalla S, Borrell J, Murphy MD, Nudo RJ, Guggenmos DJ.
    Front Neurosci; 2023 Jan 31; 17():1151309. PubMed ID: 37332854
    [Abstract] [Full Text] [Related]

  • 16. Readiness potential and movement initiation in the rat.
    Seki T, Gemba H, Matsuzaki R, Nakao K.
    Jpn J Physiol; 2005 Feb 31; 55(1):1-9. PubMed ID: 15796784
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Motor cortex is functionally organized as a set of spatially distinct representations for complex movements.
    Brown AR, Teskey GC.
    J Neurosci; 2014 Oct 08; 34(41):13574-85. PubMed ID: 25297087
    [Abstract] [Full Text] [Related]

  • 19. Complex forelimb movements and cortical topography evoked by intracortical microstimulation in male and female mice.
    Brown AR, Mitra S, Teskey GC, Boychuk JA.
    Cereb Cortex; 2023 Feb 20; 33(5):1866-1875. PubMed ID: 35511684
    [Abstract] [Full Text] [Related]

  • 20. Prenatal alcohol exposure reduces the size of the forelimb representation in motor cortex in rat: an intracortical microstimulation (ICMS) mapping study.
    Xie N, Yang Q, Chappell TD, Li CX, Waters RS.
    Alcohol; 2010 Mar 20; 44(2):185-94. PubMed ID: 20083368
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.