These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
390 related items for PubMed ID: 27726285
1. Targeted modification of plant genomes for precision crop breeding. Hilscher J, Bürstmayr H, Stoger E. Biotechnol J; 2017 Jan; 12(1):. PubMed ID: 27726285 [Abstract] [Full Text] [Related]
2. Perspectives on the Application of Genome-Editing Technologies in Crop Breeding. Hua K, Zhang J, Botella JR, Ma C, Kong F, Liu B, Zhu JK. Mol Plant; 2019 Aug 05; 12(8):1047-1059. PubMed ID: 31260812 [Abstract] [Full Text] [Related]
3. Emerging Genome Engineering Tools in Crop Research and Breeding. Bilichak A, Gaudet D, Laurie J. Methods Mol Biol; 2020 Aug 05; 2072():165-181. PubMed ID: 31541446 [Abstract] [Full Text] [Related]
4. Genome editing in fruit, ornamental, and industrial crops. Ramirez-Torres F, Ghogare R, Stowe E, Cerdá-Bennasser P, Lobato-Gómez M, Williamson-Benavides BA, Giron-Calva PS, Hewitt S, Christou P, Dhingra A. Transgenic Res; 2021 Aug 05; 30(4):499-528. PubMed ID: 33825100 [Abstract] [Full Text] [Related]
5. Targeted genome-modification tools and their advanced applications in crop breeding. Li B, Sun C, Li J, Gao C. Nat Rev Genet; 2024 Sep 05; 25(9):603-622. PubMed ID: 38658741 [Abstract] [Full Text] [Related]
6. Evolution in crop improvement approaches and future prospects of molecular markers to CRISPR/Cas9 system. Dheer P, Rautela I, Sharma V, Dhiman M, Sharma A, Sharma N, Sharma MD. Gene; 2020 Aug 30; 753():144795. PubMed ID: 32450202 [Abstract] [Full Text] [Related]
7. Genetically modified crop regulations: scope and opportunity using the CRISPR-Cas9 genome editing approach. Gupta S, Kumar A, Patel R, Kumar V. Mol Biol Rep; 2021 May 30; 48(5):4851-4863. PubMed ID: 34114124 [Abstract] [Full Text] [Related]
8. Plant genome engineering from lab to field-a Keystone Symposia report. Cable J, Ronald PC, Voytas D, Zhang F, Levy AA, Takatsuka A, Arimura SI, Jacobsen SE, Toki S, Toda E, Gao C, Zhu JK, Boch J, Van Eck J, Mahfouz M, Andersson M, Fridman E, Weiss T, Wang K, Qi Y, Jores T, Adams T, Bagchi R. Ann N Y Acad Sci; 2021 Dec 30; 1506(1):35-54. PubMed ID: 34435370 [Abstract] [Full Text] [Related]
9. A research program for the socioeconomic impacts of gene editing regulation. Whelan AI, Lema MA. GM Crops Food; 2017 Jan 02; 8(1):74-83. PubMed ID: 28080208 [Abstract] [Full Text] [Related]
10. Genome editing for crop improvement: Challenges and opportunities. Abdallah NA, Prakash CS, McHughen AG. GM Crops Food; 2015 Jan 02; 6(4):183-205. PubMed ID: 26930114 [Abstract] [Full Text] [Related]
11. Mutagenesis-based plant breeding approaches and genome engineering: A review focused on tomato. Shahwar D, Ahn N, Kim D, Ahn W, Park Y. Mutat Res Rev Mutat Res; 2023 Jan 02; 792():108473. PubMed ID: 37716439 [Abstract] [Full Text] [Related]
12. Advances in S gene targeted genome-editing and its applicability to disease resistance breeding in selected Solanaceae crop plants. Barka GD, Lee J. Bioengineered; 2022 Jun 02; 13(6):14646-14666. PubMed ID: 35891620 [Abstract] [Full Text] [Related]
13. Genome editing of crops: A renewed opportunity for food security. Georges F, Ray H. GM Crops Food; 2017 Jan 02; 8(1):1-12. PubMed ID: 28075688 [Abstract] [Full Text] [Related]
14. Current and future editing reagent delivery systems for plant genome editing. Ran Y, Liang Z, Gao C. Sci China Life Sci; 2017 May 02; 60(5):490-505. PubMed ID: 28527114 [Abstract] [Full Text] [Related]
15. Base editing in rice: current progress, advances, limitations, and future perspectives. Yarra R, Sahoo L. Plant Cell Rep; 2021 Apr 02; 40(4):595-604. PubMed ID: 33423074 [Abstract] [Full Text] [Related]