These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


159 related items for PubMed ID: 27732644

  • 41.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 42. Network structure and forces involved in perilla globulin gelation: comparison with sesame globulin.
    Takenaka Y, Arii Y, Masui H.
    Biosci Biotechnol Biochem; 2011; 75(6):1198-200. PubMed ID: 21670510
    [Abstract] [Full Text] [Related]

  • 43. Effects of sugars on the cross-linking formation and phase separation of high-pressure induced gel of whey protein from bovine milk.
    He JS, Azuma N, Hagiwara T, Kanno C.
    Biosci Biotechnol Biochem; 2006 Mar; 70(3):615-25. PubMed ID: 16556976
    [Abstract] [Full Text] [Related]

  • 44. Effect of hydrophobic modification on rheological and swelling features during chemical gelation of aqueous polysaccharides.
    Silioc C, Maleki A, Zhu K, Kjøniksen AL, Nyström B.
    Biomacromolecules; 2007 Feb; 8(2):719-28. PubMed ID: 17291098
    [Abstract] [Full Text] [Related]

  • 45.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 46. Structure and physical properties of yogurt gels: effect of inoculation rate and incubation temperature.
    Lee WJ, Lucey JA.
    J Dairy Sci; 2004 Oct; 87(10):3153-64. PubMed ID: 15377593
    [Abstract] [Full Text] [Related]

  • 47.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 48.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 49. Functional and in vitro gastric digestibility of the whey protein hydrogel loaded with nanostructured lipid carriers and gelled via citric acid-mediated crosslinking.
    Hashemi B, Madadlou A, Salami M.
    Food Chem; 2017 Dec 15; 237():23-29. PubMed ID: 28763990
    [Abstract] [Full Text] [Related]

  • 50.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 51. Utilizing whey protein isolate and polysaccharide complexes to stabilize aerated dairy gels.
    O'Chiu E, Vardhanabhuti B.
    J Dairy Sci; 2017 May 15; 100(5):3404-3412. PubMed ID: 28284696
    [Abstract] [Full Text] [Related]

  • 52. Interplay between covalent and physical interactions within environment sensitive hydrogels.
    Jeong KJ, Panitch A.
    Biomacromolecules; 2009 May 11; 10(5):1090-9. PubMed ID: 19301930
    [Abstract] [Full Text] [Related]

  • 53.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 54. A new multistep Ca2+-induced cold gelation process for beta-lactoglobulin.
    Veerman C, Baptist H, Sagis LM, van der Linden E.
    J Agric Food Chem; 2003 Jun 18; 51(13):3880-5. PubMed ID: 12797759
    [Abstract] [Full Text] [Related]

  • 55.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 56. Protein oleogels from heat-set whey protein aggregates.
    de Vries A, Wesseling A, van der Linden E, Scholten E.
    J Colloid Interface Sci; 2017 Jan 15; 486():75-83. PubMed ID: 27693552
    [Abstract] [Full Text] [Related]

  • 57. How micro-phase separation alters the heating rate effects on globular protein gelation.
    Leksrisompong PN, Foegeding EA.
    J Food Sci; 2011 Apr 15; 76(3):E318-27. PubMed ID: 21535832
    [Abstract] [Full Text] [Related]

  • 58.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 59. Niosome-loaded cold-set whey protein hydrogels.
    Abaee A, Madadlou A.
    Food Chem; 2016 Apr 01; 196():106-13. PubMed ID: 26593471
    [Abstract] [Full Text] [Related]

  • 60.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 8.